[en] Due to their exceptional mechanical and thermal characteristics, C nanotubes (CNTs) are attracting an ever increasing interest in view of tailoring the properties of metal matrix composites (MMCs) e.g. for applications at high service temperature or in thermal management… However, the poor wettability of CNTs by molten metals and their strong tendency to agglomerate are major obstacles to the large-scale production of CNTs-MMCs by classical ‘liquid-state’ processing routes such as squeeze casting. As an innovative ‘solid state’ process, Friction Stir Processing (FSP) hence appears as a very promising alternative for the production of CNTs-MMCs [1], although the method for inserting the reinforcing phase - in grooves or holes machined in the matrix material - remains time-consuming and labour-intensive.
More recently, Mertens et al. [2] proposed a new and easier technique for the insertion of C fibres in FSPed Mg-matrix composites i.e. FSP of a C fabric stacked between two metal sheets. In the present work, the feasibility of extending this latter method to the production of CNTs-MMCs has been assessed. “Bucky papers” – made from agglomerated CNTs, thus ensuring for their safe handling – were stacked between two sheets of Mg alloy AZ31B, and the resulting sandwich was FSPed. The effect of FSP experimental parameters such as the rotational and advancing speeds, and the number of FSP passes, on the microstructure of the composites and particularly on the distribution of the CNTs in the Mg matrix has been carefully studied. Moreover, a particular attention has been given to the characterization of the thermomechanical behaviour of the FSPed AZ31B-CNTs composites.
Disciplines :
Materials science & engineering
Author, co-author :
Mertens, Anne ; Université de Liège - ULiège > Département d'aérospatiale et mécanique > Science des matériaux métalliques
Simar, Aude
Garray, Didier
Halleux, Jacques
Montrieux, Henri-Michel ; Université de Liège - ULiège > Département d'aérospatiale et mécanique > Science des matériaux métalliques
Lecomte-Beckers, Jacqueline ; Université de Liège - ULiège > Département d'aérospatiale et mécanique > Science des matériaux métalliques
Language :
English
Title :
Microstructure and Thermomechanical Behaviour of Magnesium – C nanotubes Composites produced by Friction Stir Processing
Publication date :
09 September 2013
Event name :
EUROMAT 2013 - European Congress and Exhibition on Advanced Materials and Processes
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.