Arguelles-Arias, A., Ongena, M., Halimi, B., Lara, Y., Brans, A., Joris, B., and Fickers, P. 2009. Bacillus amyloliquefaciens GA1 as a source of potent antibiotics and other secondary metabolites for biocontrol of plant pathogens. Microb. Cell. Fact. 8:12.
Bais, H. P., Fall, R., and Vivanco, J. M. 2004. Biocontrol of Bacillus subtilis against infection of Arabidopsis roots by Pseudomonas syringae is facilitated by biofilm formation and surfactin production. Plant Physiol. 134:307-319. (Pubitemid 38178703)
Bhattacharyya, P. N., and Jha, D. K. 2012. Plant growth-promoting rhizobacteria (PGPR): Emergence in agriculture. World J. Microbiol. Biotechnol. 28:1327-1350.
Chen, X. H., Koumoutsi, A., Scholz, R., Schneider, K., Vater, J., Sussmuth, R., Piel, J., and Borriss, R. 2009. Genome analysis of Bacillus amyloliquefaciens FZB42 reveals its potential for biocontrol of plant pathogens. J. Biotechnol. 140:27-37.
Choudhary, D. K. 2011. Plant growth-promotion (PGP) activities and molecular characterization of rhizobacterial strains isolated from soybean (Glycine max L. Merril) plants against charcoal rot pathogen, Macrophomina phaseolina. Biotechnol. Lett. 33:2287-2295.
Choudhary, D. K., and Johri, B. N. 2009. Interactions of Bacillus spp., and plants-With special reference to induced systemic resistance (ISR). Microbiol. Res. 164:493-513.
De Meyer, G., and Hofte, M. 1997. Salicylic acid produced by the rhizobacterium Pseudomonas aeruginosa 7NSK2 induces resistance to leaf infection by Botrytis cinerea on bean. Phytopathology 87:588-593. (Pubitemid 27243032)
De Vleesschauwer, D., and Höfte, M. 2009. Pages 223-281 in: Rhizobacteria- Induced Systemic Resistance in Advances in Botanical Research, J.-C. Kader, and M. Delseny, eds. Elsevier Ltd, Philadelphia.
Debois, D., Ongena, M., Cawoy, H., and De Pauw, E. 2013. MALDIFTICR MS Imaging as a powerful tool to identify Paenibacillus antibiotics involved in the inhibition of plant pathogens. J. Am. Soc. Mass Spectrom.doi: 10.1007/s13361-013-0620-2, Published online.
Durrant, W. E., and Dong, X. 2004. Systemic acquired resistance. Annu. Rev. Phytopathol. 42:185-209. (Pubitemid 39308511)
Fan, B., Chen, X. H., Budiharjo, A., Bleiss, W., Vater, J., and Borriss, R. 2011. Efficient colonization of plant roots by the plant growth promoting bacterium Bacillus amyloliquefaciens FZB42, engineered to express green fluorescent protein. J. Biotechnol. 151:303-311.
Fauconnier, M. L., Rojas-Beltran, J., Dupuis, B., Delaplace, P., Frettinger, P., Gosset, V., and du Jardin, P. 2008. Changes in oxylipin synthesis after Phytophthora infestans infection of potato leaves do not correlate with resistance. Plant Physiol. Biochem. 46:823-831.
Fraser, C., and Chapple, C. 2011. The phenylpropanoid pathway in Arabidopsis. Page e0152 in: The Arabidopsis Book, R. Last, ed. American Society of Plant Biologists, Danvers, MA, U.S.A. Published online.
García-Gutiérrez, L., Romero, D., Zeriouh, H., Cazorla, F.M., Torés, J. A., de Vicente, A., and Pérez-García, A. 2012. Isolation and selection of plant growth-promoting rhizobacteria as inducers of systemic resistance in melon. Plant Soil 358:201-212.
Hamze, K., Julkowska, D., Autret, S., Hinc, K., Nagorska, K., Sekowska, A., Holland, I. B., and Séror, S.J. 2009. Identification of genes required for different stages of dendritic swarming in Bacillus subtilis, with a novel role for phrC. Microbiology 155:398-412.
Henry, G., Deleu, M., Jourdan, E., Thonart, P., and Ongena, M. 2011. The bacterial lipopeptide surfactin targets the lipid fraction of the plant plasma membrane to trigger immune-related defence responses. Cell. Microbiol. 13:1824-1837.
Henry, G., Thonart, P., and Ongena, M. 2012. PAMPs, MAMPs, DAMPs and others: An update on the diversity of plant immunity elicitors. Biotechnol., Agron., Soc. Environ. 16:257-268.
Hofemeister, J., Conrad, B., Adler, B., Hofemeister, B., Feesche, J., Kucheryava, N., Steinborn, G., Franke, P., Grammel, N., Zwintscher, A., Leenders, F., Hitzeroth, G., and Vater, J. 2004. Genetic analysis of the biosynthesis of non-ribosomal peptide- and polyketide-like antibiotics, iron uptake and biofilm formation by Bacillus subtilis A1/3. Mol. Genet. Genomics 272:363-378. (Pubitemid 40064521)
Jacques, P., Hbid, C., Destain, J., Razafindralambo, H., Paquot, M., De Pauw, E., and Thonart, P. 1999. Optimization of biosurfactant lipopeptide production from Bacillus subtilis S499 by plackett-burman design. Appl. Biochem. Biotechnol. 77-79:223-233. (Pubitemid 29300458)
Jankiewicz, U., and Kotonowicz, M. 2012. The involvement of Pseudomonas bacteria in induced systemic resistance in plants (Review). Appl. Biochem. Microbiol. 48:244-249.
Joshi, R., and McSpadden Gardener, B. B. 2006. Identification and characterization of novel genetic markers associated with biological control activities in Bacillus subtilis. Phytopathology 96:145-154. (Pubitemid 43210412)
Jourdan, E., Henry, G., Duby, F., Dommes, J., Barthelemy, J. P., Thonart, P., and Ongena, M. 2009. Insights into the defense-related events occurring in plant cells following perception of surfactin-type lipopeptide from Bacillus subtilis. Mol. Plant-Microbe Interact. 22:456-468.
Kamilova, F., Kravchenko, L. V., Shaposhnikov, A. I., Makarova, N., and Lugtenberg, B. 2006. Effects of the tomato pathogen Fusarium oxysporum f. sp. radicis-lycopersici and of the biocontrol bacterium Pseudomonas fluorescens WCS365 on the composition of organic acids and sugars in tomato root exudate. Mol. Plant-Microbe Interact. 9:1121-1126. (Pubitemid 44452950)
Kinsella, K., Schulthess, C. P., Morris, T. F., and Stuart, J. D. 2009. Rapid quantification of Bacillus subtilis antibiotics in the rhizosphere. Soil Biol. Biochem. 41:374-379.
Kinsinger, R. F., Shirk, M. C., and Fall, R. 2003. Rapid surface motility in Bacillus subtilis is dependent on extracellular surfactin and potassium ion. J. Bacteriol. 185:5627-5631. (Pubitemid 37082419)
López, D., and Kolter, R. 2010. Extracellular signals that define distinct and coexisting cell fates in Bacillus subtilis. FEMS (Fed. Eur. Microbiol. Soc.) Microbiol. Rev. 34:134-149.
López, D., Vlamakis, H., Losick, R., and Kolter, R. 2009. Paracrine signaling in a bacterium. Genes Dev. 23:1631-1638.
Lugtenberg, B., and Kamilova, F. 2009. Plant-growth-promoting rhizobacteria. Ann. Rev. Microbiol. 63:541-556.
Luna, E., Bruce, T. J. A., Roberts, M. R., Flors, V., and Ton, J. 2012. Nextgeneration systemic acquired resistance. Plant Physiol. 158:844-853.
Mariutto, M., Duby, F., Adam, A., Bureau, C., Fauconnier, M. L., Ongena, M., Thonart, P., and Dommes, J. 2011. The elicitation of a systemic resistance by Pseudomonas putida BTP1 in tomato involves the stimulation of two lipoxygenase isoforms. BMC Plant Biol. 11.
McSpadden Gardener, B. B. 2004. Ecology of Bacillus and Paenibacillus spp. in agricultural systems. Phytopathology 94:1252-1258. (Pubitemid 39448205)
Nihorimbere, V., Fickers, P., Thonart, P., and Ongena, M. 2009. Ecological fitness of Bacillus subtilis BGS3 regarding production of the surfactin lipopeptide in the rhizosphere. Environ. Microbiol. Rep. 1:124-130.
Nihorimbere, V., Cawoy, H., Seyer, A., Brunelle, A., Thonart, P., and Ongena, M. 2012. Impact of rhizosphere factors on cyclic lipopeptide signature from the plant beneficial strain Bacillus amyloliquefaciens S499. FEMS (Fed. Eur. Microbiol. Soc.) Microbiol. Ecol. 79:176-191.
Ongena, M., and Jacques, P. 2008. Bacillus lipopeptides: Versatile weapons for plant disease biocontrol. Trends Microbiol. 16:115-125.
Ongena, M., Duby, F., Rossignol, F., Fauconnier, M. L., Dommes, J., and Thonart, P. 2004. Stimulation of the lipoxygenase pathway is associated with systemic resistance induced in bean by a nonpathogenic Pseudomonas strain. Mol. Plant-Microbe Interact. 17:1009-1018. (Pubitemid 39098889)
Ongena, M., Duby, F., Jourdan, E., Beaudry, T., Jadin, V., Dommes, J., and Thonart, P. 2005a. Bacillus subtilis M4 decreases plant susceptibility towards fungal pathogens by increasing host resistance associated with differential gene expression. Appl. Microbiol. Biotechnol. 67:692-698. (Pubitemid 40898089)
Ongena, M., Jacques, P., Touré, Y., Destain, J., Jabrane, A., and Thonart, P. 2005b. Involvement of fengycin-type lipopeptides in the multifaceted biocontrol potential of Bacillus subtilis. Appl. Microbiol. Biotechnol. 69:29-38. (Pubitemid 41719173)
Ongena, M., Adam, A., Jourdan, E., Paquot, M., Brans, A., Joris, B., Arpigny, J. L., and Thonart, P. 2007. Surfactin and fengycin lipopeptides of Bacillus subtilis as elicitors of induced systemic resistance in plants. Environ. Microbiol. 9:1084-1090. (Pubitemid 46397079)
Prost, I., Dhondt, S., Rothe, G., Vicente, J., Rodriguez, M. J., Kift, N., Carbonne, F., Griffiths, G., Esquerré-Tugayé, M. T., Rosahl, S., Castresana, C., Hamberg, M., and Fournier, J. 2005. Evaluation of the antimicrobial activities of plant oxylipins supports their involvement in defense against pathogens. Plant Physiol. 139:1902-1913. (Pubitemid 43899826)
Raaijmakers, J. M., de Bruijn, I., Nybroe, O., and Ongena, M. 2010. Natural functions of lipopeptides from Bacillus and Pseudomonas: More than surfactants and antibiotics. FEMS (Fed. Eur. Microbiol. Soc.) Microbiol Rev 34:1037-1062.
Ramey, B. E., Koutsoudis, M., von Bodman, S. B., and Fuqua, C. 2004. Biofilm formation in plant-microbe associations. Curr. Opin. Microbiol. 7:602-609. (Pubitemid 39536286)
Rückert, C., Blom, J., Chen, X., Reva, O., and Borriss, R. 2011. Genome sequence of B. amyloliquefaciens type strain DSM7T reveals differences to plant-associated B. amyloliquefaciens FZB42. J. Biotechnol. 155:78-85.
Ryu, C. M., Farag, M. A., Hu, C. H., Reddy, M. S., Kloepper, J. W., and Pare, P. W. 2004. Bacterial volatiles induce systemic resistance in Arabidopsis. Plant Physiol. 134:1017-1026. (Pubitemid 38398250)
Shah, J. 2005. Lipids, lipases, and lipid-modifying enzymes in plant disease resistance. Ann. Rev. Phytopathol. 43:229-260. (Pubitemid 41318872)
Shah, J. 2009. Plants under attack: Systemic signals in defence. Curr. Opin. Plant Biol. 12:459-464.
Stein, T. 2005. Bacillus subtilis antibiotics: Structures, synhesis and specifics functions. Mol Microbiol 56:845-847.
van den Burg, H. A., and Takken, F. L. W. 2009. Does chromatin remodeling mark systemic acquired resistance? Trends Plant Sci. 14:286-294.
Van Loon, L. C. 2007. Plant responses to plant growth-promoting rhizobacteria. Eur. J. Plant Pathol. 119:243-254. (Pubitemid 47594187)
Vanitha, S. C., and Umesha, S. 2011. Pseudomonas fluorescens mediated systemic resistance in tomato is driven through an elevated synthesis of defense enzymes. Biol. Plant. 55:317-322.
Yang, S. Y., Park, M. R., Kim, I. S., Kim, Y. C., Yang, J. W., and Ryu, C. M. 2011. 2-Aminobenzoic acid of Bacillus sp. BS107 as an ISR determinant against Pectobacterium carotovorum subsp. carotovotrum SCC1 in tobacco. Eur. J. Plant Pathol. 129:371-378.