[en] Reverse micelles of omega- and alpha,omega-metal sulfonato polystyrenes in toluene have been investigated by Li-6, Li-7, and pulsed field gradient NMR. Micelles are found to be of a narrow size distribution and to consist of roughly spherical ionic cores shielded from the solvent by a polystyrene shell. The nature of the ion pair is found to influence significantly the micellar size. The correlation time characteristic of lithium relaxation is faster than the reorientational correlation time of the aggregates, which means that lithium relaxation essentially takes place within the ionic cores. The effective relaxation mechanism is consistent with a fast exchange of lithium ions between different coordination sites within the aggregates. In concentrated solutions, the equilibrium between aggregated polymer chains and unassociated chains is essentially shifted toward the aggregated species. This tendency is reversed upon dilution. Below a critical micellar concentration of ca. 0.01 g/dL, only ''free'' chains persist in solution. Temperature has no significant effect on the position of the aggregation equilibrium. The aggregates are dissociated by the addition of a polar cosolvent, such as methanol, which solvates the ion pairs. The MeOH/Li+ molar ratio must, however, be higher than 100 to perturb significantly the ion pair aggregation. Up to a MeOH/Li+ ratio of 10 000, part of the chains remain aggregated, and the lithium spin-lattice relaxation is dominated by the aggregates. Above a MeOH/Li+ ratio of 10 000, the aggregates are almost completely disrupted. Self-diffusion coefficients of the difunctional chains are not dramatically smaller compared to the monofunctional counterparts, even when solutions of difunctional compounds form a gel. This behavior might be explained by the percolation model applied to the aggregation process, with the pulsed field NMR experiment probing only the selfdiffusion of the clusters in the sol phase of the gel.
Research Center/Unit :
Center for Education and Research on Macromolecules (CERM)
Disciplines :
Materials science & engineering Chemistry
Author, co-author :
Vanhoorne, Pierre ; Université de Liège - ULiège > Department of Chemistry > Center for Education and Research on Macromolecules (CERM)
Grandjean, Jean ; Université de Liège - ULiège > Department of Chemistry > Laboratoire de Chimie Fine aux Interfaces
Jérôme, Robert ; Université de Liège - ULiège > Department of Chemistry > Center for Education and Research on Macromolecules (CERM)
Language :
English
Title :
Microdynamics of reverse micelles of ω- and α,ω-metal sulfonato polystyrene in toluene
Publication date :
18 May 1995
Journal title :
Macromolecules
ISSN :
0024-9297
eISSN :
1520-5835
Publisher :
Amer Chemical Soc, Washington, United States - Washington
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
Structure and Properties oflonomers; Pinéri, M., Eisenberg, A., Eds.; NATO Advanced Study Institute Series C198; Reidel: Boston, 1987.
MacKnight, W. J.; Earnest, T. R. J. Polym. Sci., Macromol. Rev. 1981, 16, 41.
Coulombic Interactions in Macromolecular Systems; Eisenberg, A., Bailey, F. E., Eds.; ACS Symposium Series 302; American Chemical Society: Washington, DC, 1986.
Ions in Polymers; Eisenberg, A., Ed.; Advances in Chemistry Series 187; American Chemical Society: Washington, DC, 1980.
Broze, G.; Jérôme, R.; Teyssié, P. H.; Gallot, B. J. Polym. Sci., Polym. Lett. Ed. 1981, 19, 415.
Williams, C. E.; Russell, T. P.; Jérôme, R.; Horrion, J. Macromolecules 1986, 19, 2877.
Broze, G.; Jérôme, R.; Teyssié, P. H.; Marco, C. Polym. Bull. 1981, 4, 241.
Broze, G.; Jérôme, R.; Teyssié, P. H. Macromolecules 1982, 15, 920.
Vlaic, G.; Williams, C. E.; Jérôme, R.; Tant, M. R.; Wilkes, G. L. Polymer 1987, 29, 173.
Bagrodia, S.; Pisipati, R.; Wilkes, G. L.; Storey, R. F.; Kennedy, J. P. J. Appl. Polym. Sci. 1984, 29, 3065.
Fitzgerald, J. J.; Weiss, R. A. J. Macromol. Sci., Rev. Macromol. Chem. Phys. 1988, C28 (1), 99.
Jérôme, R. In Telechelic Polymers: Synthesis and Applications; Goethals, E. J., Ed.; CRC Press, Inc.: Boca Raton, FL, 1989; Chapter 11.
Yano, S.; Tadano, K.; Jérôme, R. Macromolecules 1991, 24, 6439.
Vanhoorne, P.; Jérôme, R.; Teyssié, P. H.; Lauprêtre, F. Macromolecules 1994, 27, 2548.
Eisenberg, A.; Hird, B.; Moore, R. B. Macromolecules 1990, 23, 4098.
Vanhoorne, P.; Van den Bossche, G.; Fontaine, F.; Sobry, R.; Jérôme, R.; Stamm, M. Macromolecules 1994, 27, 838.
Vanhoorne, P.; Maus, C.; Van den Bossche, G.; Fontaine, F.; Sobry, R.; Jérôme, R.; Stamm, M. J. Phys. IV 1993, 3 (C8), 63.
Vanhoorne, P.; Jérôme, R., submitted to Macromolecules.
Morawetz, H.; Wang, Y. Macromolecules 1988, 21, 107.
Dowling, K. C.; Thomas, J. K. Macromolecules 1991, 24, 4131.
Lindman, B.; Forsen, S. NMR Basic Principles and Progress; Springer Verlag: Berlin, 1976; Vol. 12, Chapter 5.
Johansson, C.; Drakenberg, T. Ann. Rep. NMR Spectrosc. 1989, 22, 1.
Grandjean, J. Ann. Rep. NMR Spectrosc. 1992, 24, 181.
Grandjean, J.; Laszlo, P. Quadrupolar Probes in Solution In Dynamics in Solutions and Fluid Mixtures by NMR; Delpuech, J. J., Ed.; John Wiley and Sons: London, in press.
Grandjean, J.; Laszlo, P. J. Magn. Reson. 1991, 92, 404.
Park, J. -K.; Park, B. -K.; Ryoo, R. Polym. Eng. Sci. 1991, 31, 873.
Kenéz, P. H.; Carlström, G.; Furó, I.; Halle, B. J. Phys. Chem. 1992, 96, 9524.
Rooney, W. D.; Barbara, T. M.; Springer, C. S., Jr. J. Am. Chem. Soc. 1988, 110, 674.
Stejskal, E. O.; Tanner, J. E. J. Chem. Phys. 1965, 42, 288.
Von Meerwall, E. D. Adv. Polym. Sci. 1983, 54, 1.
Stilbs, P. NMR Spectrosc. 1987, 19, 1.
Callaghan, P. T.; Le Gros, M. A.; Pinder, D. N. J. Chem. Phys. 1983, 79, 6372.
Herden, H.; Kärger, J.; Pfeifer, H.; Kube, C.; Schöllner, R. J. Colloid Interface Sci. 1992, 152, 281.
The Principles of Nuclear Magnetism; Abragam, R., Ed.; Clarendon: Oxford, U. K., 1970; Chapter VIII.
Hubbard, P. S. J. Chem. Phys. 1970, 53, 985.
Jaccard, G.; Wimperis, S.; Bodenhausen, G. J. Chem. Phys. 1986, 85, 6282.
Komoroski, R. A.; Mauritz, K. A. J. Am. Chem. Soc. 1978, 100, 7487.
McOʼnConnell, E.; Root, T. W.; Cooper, S. L. Macromolecules 1994, 27, 5803.
Hertz, H. G.; Tutsch, R.; Versmold, H. Ber. Bunsen-Ges. Phys. Chem. 1971, 75, 1177.
Jalal, V.; Duplessix, R. J. Phys. (Fr.) 1988, 49, 1775.
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.