Facultative paedomorphosis and the pattern of intra- and interspecific variation in cranial skeleton: lessons from European newts (Ichthyosaura alpestris and Lissotriton vulgaris)
[en] Paedomorphosis, the presence of ancestral larval and juvenile traits that occur at the descendent adult stage, is an evolutionary phenomenon that shaped morphological evolution in many vertebrate lineages, including tailed amphibians. Among salamandrid species, paedomorphic and metamorphic phenotypes can be observed within single populations (facultative paedomorphosis). Despite wide interest in facultative paedomorphosis and polymorphism produced by heterochronic changes (heterochronic polymorphism), the studies that investigate intraspecific morphological variation in facultative paedomorphic species are largely missing. By quantifying the cranium size and development (bone development and remodeling), we investigated the variation at multiple levels (i.e., between sexes, populations and species) of two facultatively paedomorphic European newt species: the alpine and the smooth newt. The pattern of variation between paedomorphs (individuals keeping larval traits at the adult stage) and metamorphs (metamorphosed adult individuals) varied between species and among populations within a single species. The patterns of variation in size and skull formation appear to be more uniform in the alpine than in the smooth newt, indicating that developmental constraints differed between species (more pronounced in alpine than in smooth newt). Our study shows that the cranial skeleton provides detailed insight in the pattern of variation and divergence in heterochronic polymorphism within and between species and open new questions related to heterochronic polymorphism and evolution of cranial skeleton.
Research Center/Unit :
AFFISH-RC - Applied and Fundamental FISH Research Center - ULiège
Disciplines :
Zoology
Author, co-author :
Ivanović, Ana; Institute for Zoology, University of Belgrade
Cvijanović, Milena; Institute for Biological Research Siniša Stanković, University of Belgrade > Department of Evolutionary Biology,
Denoël, Mathieu ; Université de Liège - ULiège > Département de Biologie, Ecologie et Evolution > Biologie du comportement - Ethologie et psychologie animale
Slijepčević, Maja; Institute for Biological Research Siniša Stanković, University of Belgrade > Department of Evolutionary Biology
Kalezić, Miloš L.; Institute for Biological Research Siniša Stanković & Institute for Zoology, University of Belgrade
Language :
English
Title :
Facultative paedomorphosis and the pattern of intra- and interspecific variation in cranial skeleton: lessons from European newts (Ichthyosaura alpestris and Lissotriton vulgaris)
Publication date :
March 2014
Journal title :
Zoomorphology
ISSN :
0720-213X
eISSN :
1432-234X
Publisher :
Springer Science & Business Media B.V.
Volume :
133
Issue :
1
Pages :
99-109
Peer reviewed :
Peer Reviewed verified by ORBi
Funders :
F.R.S.-FNRS - Fonds de la Recherche Scientifique ULg FSR - Université de Liège. Fonds spéciaux pour la recherche
Alberch P (1983) Morphological variation in the neotropical salamander genus Bolitoglossa. Evolution 37: 906-919.
Allen CE, Beldade P, Zwaan BJ, Brakefield PM (2008) Differences in the selection response of serially repeated color pattern characters: standing variation, development, and evolution. BMC Evol Biol 8: 94.
Babik W, Branicki W, Crnobrnja-Isailović J et al (2005) Phylogeography of two European newt species: discordance between mtDNA and morphology. Mol Ecol 14: 2475-2491.
Bever GS (2009a) Postnatal ontogeny of the skull in the extant North American turtle Sternotherus odoratus (Cryptodira: Kinosternidae). Bull Am Mus Nat Hist 330: 1-97.
Bever GS (2009b) The postnatal skull of the extant turtle Pseudemys texana (Cryptodira: Emydidae) with comments on the study of discrete intraspecific variation. J Morphol 270: 97-128.
Bhullar BA (2012) A phylogenetic approach to ontogeny and heterochrony in the fossil record: cranial evolution and development in anguimorphan lizards (Reptilia: Squamata). J Exp Zool Part B Mol Dev Evol 318: 521-530.
Chippindale PT, Bonett RM, Baldwin AS, Wiens JJ (2004) Phylogenetic evidence for a major reversal in life history evolution in plethodontid salamanders. Evolution 58: 2809-2822.
Denoël M (2002) Paedomorphosis in the Alpine newt (Triturus alpestris): decoupling behavioural and morphological change. Behav Ecol Sociobiol 52: 394-399.
Denoël M (2003) How do paedomorphic newts cope with lake drying? Ecography 26: 405-410.
Denoël M, Joly P (2000) Neoteny and progenesis as two heterochronic processes involved in paedomorphosis in Triturus alpestris (Amphibia, Caudata). Proc R Soc Lond B 267: 1481-1485.
Denoël M, Poncin P (2001) The effect of food on growth and metamorphosis of paedomorphs in Triturus alpestris apuanus. Arch Hydrobiol 152: 661-670.
Denoël M, Schabetsberger R (2003) Resource partitioning in two heterochronic populations of Greek Alpine newts, Triturus alpestris veluchiensis. Acta Oecol 24: 55-64.
Denoël M, Joly P, Whiteman HH (2005) Evolutionary ecology of facultative paedomorphosis in newts and salamanders. Biol Rev Camb Philos Soc 80: 663-671.
Denoël M, Ivanović A, Džukić G, Kalezić ML (2009) Sexual size dimorphism in the evolutionary context of facultative paedomorphosis: insights from European newts. BMC Evol Biol 9: 278.
Dingerkus G, Uhler LD (1977) Enzyme clearing of alcian blue stained whole small vertebrates for demonstration of cartilage. Stain Technol 52: 229-232.
Djorović A, Kalezić ML (2000) Paedogenesis in European newts (Triturus: Salamandridae): cranial morphology during ontogeny. J Morphol 243: 127-139.
Eastman JM, Storfer A (2011) Correlations of life-history and distributional-range variation with salamander diversification rates: evidence for species selection. Syst Biol 60: 503-518.
Gould SJ (1977) Ontogeny and phylogeny. Harvard University Press, Cambridge.
Hallgrímsson B, Hall BK (2005) In: Hallgrímsson B, Hall BK (eds) Variation: a central concept in biology B. Elsevier Academic Press, New York.
Han X, Fu J (2013) Does life history shape sexual size dimorphism in anurans? A comparative analysis. BMC Evol Biol 13: 27.
Hanken J (1989) Development and evolution in amphibians. Am Sci 77: 336-343.
Ivanović A, Sotiropoulos K, Furtula M, Džukić G, Kalezić ML (2008) Sexual size and shape evolution in European newts (Amphibia: Caudata: Salamandridae) on the Balkan Peninsula. J Zool Syst Evol Res 46: 381-387.
Johnson CK, Voss SR (2013) Salamander paedomorphosis: linking thyroid hormone to life history and life cycle evolution. Curr Top Dev Biol 103: 229-258.
Kalezić ML, Džukić G (1986) The frequent occurrence of paedomorphosis in the smooth newt (Triturus vulgaris) populations from Submediterranean area of Yugoslavia. Amphibia-Reptilia 7: 86-89.
Kalezić ML, Cvetković D, Djorović A, Džukić G (1996) Alternative life-history pathways: paedomorphosis and adult fitness in European newts (Triturus vulgaris and T. alpestris). J Zool Sys Evol Res 34: 1-7.
Klingenberg CP (2010) Evolution and development of shape: integrating quantitative approaches. Nat Rev Genet 11: 623-635.
Laudet V (2011) The origins and evolution of vertebrate metamorphosis. Curr Biol 21: R726-R737.
Lebedkina NS (2004) Evolution of the amphibian skull. Pensoft, Sofia.
Lynch M, Walsh B (1998) Genetics and analysis of quantitative traits. Sinauer Associates, Sunderland.
Mabee PM, Olmstead KL, Cubbage CC (2000) An experimental study of intraspecific variation, developmental timing, and heterochrony in fishes. Evolution 54: 2091-2106.
Marconi M, Simonetta AM (1988) The morphology of the skull in neotenic and normal Triturus vulgaris meridionalis (Boulenger) (Amphibia, Caudata, Salamandridae). Monit Zool ltal 22: 365-396.
McNamara KJ (1986) A guide to the nomenclature of heterochrony. J Paleontol 60: 4-13.
McNamara KJ (2012) Heterochrony: the evolution of development. Evo Edu Outreach 5: 203-218.
Raff RA (1996) The shape of life: genes, development, and the evolution of animal form. University of Chicago Press, Chicago.
Rieppel O (1993) Patterns of diversity in the reptilian skull. In: Hanken J, Hall BK (eds) The skull, vol. II. Patterns of structural and systematic diversity. University Press, Chicago, pp 344-390.
Roček Z (1996) Skull of the neotenic salamandrid amphibian Triturus alpestris and abbreviated development in the tertiary Salamandridae. J Morphol 230: 187-197.
Rose CS (1999) Hormonal control in larval development and evolution-Amphibians. In: Hall K, Wake MH (eds) The origin and evolution of larval forms. Academic Press, San Diego, pp 167-217.
Rose CS (2003) The developmental morphology of salamander skulls. In: Heatwole H, Davies M (eds) Amphibian biology, vol. V. Osteology. Surrey Beatty and Sons. Pty. Ltd, Australia, pp 1684-1781.
Schluter D (1996) Adaptive radiation along genetic lines of least resistance. Evolution 50: 1766-1774.
Schoch RR (2010) Heterochrony: the interplay between development and ecology in an extinct amphibian clade. Paleobiology 36: 318-334.
Semlitsch RD, Wilbur HM (1989) Artificial selection for paedomorphosis in the salamander Ambystoma talpoideum. Evolution 43: 105-112.
Semlitsch RD, Harris RN, Wilbur HM (1990) Paedomorphosis in Ambystoma talpoideum: maintenance of population variation and alternative life-history pathways. Evolution 44: 1604-1613.
Shaffer HB (1984) Evolution in a paedomorphic lineage. II. Allometry and form in the Mexican ambystomatid salamanders. Evolution 38: 1207-1218.
Shaffer HB, Voss SR (1996) Phylogenetic and mechanistic analysis of a developmentally integrated character complex: alternate life history modes in ambystomatid salamanders. Am Zool 36: 24-35.
Sheets HD (2003) IMP-integrated morphometrics package. http://www3. canisius. edu/_sheets/morphsoft. html. Accessed 24 Mar 2013.
Smirnov SV, Vassilieva AB (2003) Skeletal and dental ontogeny in the smooth newt Triturus vulgaris (Urodela: Salamandridae): role of thyroid hormone in its regulation. Russ J Herp 10: 93-110.
Sotiropoulos K, Eleftherakos K, Džukić G, Kalezić ML, Legakis A, Polymeni RM (2007) Phylogeny and biogeography of the alpine newt Mesotriton alpestris (Salamandridae, Caudata), inferred from mtDNA sequences. Mol Phylogenet Evol 45: 211-226.
Steinfartz S, Vicario S, Arntzen JW, Caccone A (2007) A Bayesian approach on molecules and behavior: reconsidering phylogenetic and evolutionary patterns of the Salamandridae with emphasis on Triturus newts. J Exp Zool B Mol Dev Evol 306B: 139-162.
Tills O, Rundle SD, Salinger M, Haun T, Pfenninger M, Spicer JI (2011) A genetic basis for intraspecific differences in developmental timing? Evol Dev 13: 542-548.
Voss SR (1997) Adaptive evolution via a major gene effect: paedomorphosis in the Mexican axolotl. PNAS 94: 14185-14189.
Wagner GP (1988) The influence of variation and of developmental constraints on the rate of multivariate phenotypic evolution. J Evol Biol 1: 45-66.
Weins JJ, Hoverman JT (2008) Digit reduction, body size, and paedomorphosis in salamanders. Evol Dev 10: 449-463.
Weisrock DW, Papenfuss TJ, Macey JR et al (2006) A molecular assessment of phylogenetic relationships and lineage accumulation rates within the family Salamandridae (Amphibia, Caudata). Mol Phylogenet Evol 41: 368-383.
West-Eberhard MJ (1989) Phenotypic plasticity and the origins of diversity. Annu Rev Ecol Syst 20: 249-278.
Whiteman HH (1994) Evolution of facultative paedomorphosis in salamanders. Quart Rev Biol 69: 205-221.
Whiteman HH, Semlitsch RD (2005) Asymmetric reproductive isolation among polymorphic salamanders. Biol J Linn Soc 86: 265-281.
Whiteman HH, Wissinger SA, Denoël M, Mecklin CJ, Gerlanc NM, Gutrich JJ (2012) Larval growth in polyphenic salamanders: making the best of a bad lot. Oecologia 168: 109-118.
Zajc I, Arntzen JW (1999) Phylogenetic relationships of the European newts (genus Triturus) tested with mitochondrial DNA-sequence data. Contrib Zool 68: 73-81.
Zhang P, Papenfuss TJ, Wake MH, Qu L, Wake DB (2008) Phylogeny and biogeography of the family Salamandridae (Amphibia: Caudata) inferred from complete mitochondrial genomes. Mol Phylogenet Evol 49: 586-597.