[en] In the last few years, an increased attention has been focused on NAD(+)-dependent DNA ligases. This is mostly due to their potential use as antibiotic targets, because effective inhibition of these essential enzymes would result in the death of the bacterium. However, development of an efficient drug requires that the conformational modifications involved in the catalysis of NAD(+)-dependent DNA ligases are understood. From this perspective, we have investigated the conformational changes occurring in the thermophilic Thermus scotoductus NAD(+)-DNA ligase upon adenylation, as well as the effect of cofactor binding on protein resistance to thermal and chemical (guanidine hydrochloride) denaturation. Our results indicate that cofactor binding induces conformational rearrangement within the active site and promotes a compaction of the enzyme. These data support an induced "open-closure" process upon adenylation, leading to the formation of the catalytically active enzyme that is able to bind DNA. These conformational changes are likely to be associated with the protein function, preventing the formation of nonproductive complexes between deadenylated ligases and DNA. In addition, enzyme adenylation significantly increases resistance of the protein to thermal denaturation and GdmCl-induced unfolding, establishing a thermodynamic link between ligand binding and increased conformational stability. Finally, chemical unfolding of deadenylated and adenylated enzyme is accompanied by accumulation of at least two equilibrium intermediates, the molten globule and premolten globule states. Maximal populations of these intermediates are shifted toward higher GdmCl concentrations in the case of the adenylated ligase. These data provide further insights into the properties of partially folded intermediates.
Disciplines :
Biochemistry, biophysics & molecular biology
Author, co-author :
Georlette, D.
Blaise, Vinciane ; Université de Liège - ULiège > Département des sciences et gestion de l'environnement > Département des sciences et gestion de l'environnement
Bouillenne, Fabrice ; Université de Liège - ULiège > Centre d'ingénierie des protéines
Damien, B.
Thorbjarnardottir, S. H.
Depiereux, E.
Gerday, Charles ; Université de Liège - ULiège > Services généraux (Faculté des sciences) > Relations académiques et scientifiques (Sciences)
Uversky, V. N.
Feller, Georges ; Université de Liège - ULiège > Département des sciences de la vie > Labo de biochimie
Language :
English
Title :
Adenylation-dependent conformation and unfolding pathways of the NAD(+)-dependent DNA ligase from the thermophile Thermus scotoductus
Publication date :
February 2004
Journal title :
Biophysical Journal
ISSN :
0006-3495
eISSN :
1542-0086
Publisher :
Biophysical Society, Bethesda, United States - Maryland
Ackers, G. K. 1970. Analytical gel chromatography of proteins. Adv. Protein Chem. 24:343-446.
Akhtar, M. S., A. Ahmad, and V. Bhakuni. 2002. Guanidinium chloride-and urea-induced unfolding of the dimeric enzyme glucose oxidase. Biochemistry. 41:3819-3827.
Aravind, L, and E. V. Koonin. 1999. Gleaning non-trivial structural, functional and evolutionary information about proteins by iterative database searches. J. Mol. Biol. 287:1023-1040.
Barany, F., and D. H. Gelfand. 1991. Cloning, overexpression and nucleotide sequence of a thermostable DNA ligase-encoding gene. Gene. 109:1-11.
Chen, Y. H., J. T. Yang, and H. M. Martinez. 1972. Determination of the secondary structures of proteins by circular dichroism and optical rotatory dispersion. Biochemistry. 11:4120-4131.
Brandes, H. K., F. W. Larimer, T. Y. Lu, J. Dey, and F. C. Hartman. 1998. Roles and microenvironments of tryptophanyl residues of spinach phosphoribulokinase. Arch. Biochem. Biophys. 352:130-136.
Brannigan, J. A., S. R. Ashford, A. J. Doherty, D. J. Timson, and D. B. Wigley. 1999. Nucleotide sequence, heterologous expression and novel purification of DNA ligase from Bacillus stearothermophilus. Biochim. Biophys. Acta. 1432:413-418.
Burstein, E. A. 1976. Intrinsic Protein Fluorescence: Origin and Applications. Series Biophysics, Vol. 7, Viniiti, Moscow.
Bushmarina, N. A., I. M. Kuznetsova, A. G. Biktashev, K. K. Turoverov, and V. N. Uversky. 2001. Partially folded conformations in the folding pathway of bovine carbonic anhydrase II: a fluorescence spectroscopic analysis. Chembiochem. 2:813-821.
Candy, J. M., J. Koga, P. F. Nixon, and R. G. Duggleby. 1996. The role of residues glutamate-50 and phenylalanine-496 in Zymomonas mobilis pyruvate decarboxylase. Biochem. J. 315:745-751.
Cherepanov, A. V., and S. de Vries. 2002. Dynamic mechanism of nick recognition by DNA ligase. Eur. J. Biochem. 269:5993-5999.
D'Auria, S., P. Herman, M. Rossi, and J. R. Lakowicz. 1999. The fluorescence emission of the apo-glucose oxidase from Aspergillus niger as probe to estimate glucose concentrations. Biochem. Biophys. Res. Commun. 263:550-553.
Depiereux, E., G. Baudoux, P. Briffeuil, I. Reginster, X. De Bolle, C. Vinals, and E. Feytmans. 1997. Match-Box_server: a multiple sequence alignment tool placing emphasis on reliability. Comput. Appl. Biosci. 13:249-256.
Diefenbach, R. J., and R. G. Duggleby. 1991. Pyruvate decarboxylase from Zymomonas mobilis. Structure and re-activation of apoenzyme by the cofactors thiamin diphosphate and magnesium ion. Biochem. J. 276:439-445.
Doherty, A. J., and T. R. Dafforn. 2000. Nick recognition by DNA ligases. J. Mol. Biol. 296:43-56.
Doherty, A. J., and S. W. Suh. 2000. Structural and mechanistic conservation in DNA ligases. Nucleic Acids Res. 28:4051-4058.
Favilla, R., M. Goldoni, A. Mazzini, P. Di Muro, B. Salvato, and M. Beltramini. 2002. Guanidinium chloride induced unfolding of a hemocyanin subunit from Carcinus aestuarii. I. Apo form. Biochim. Biophys. Acta. 1597:42-50.
Fechteler, T., U. Dengler, and D. Schomburg. 1995. Prediction of protein three-dimensional structures in insertion and deletion regions: a procedure for searching data bases of representative protein fragments using geometric scoring criteria. J. Mol. Biol. 253:114-131.
Georlette, D., Z. O. Jonsson, F. Van Petegem, J. Chessa, J. Van Beeumen, U. Hubscher, and C. Gerday. 2000. A DNA ligase from the psychrophile Pseudoalteromonas haloplanktis gives insights into the adaptation of proteins to low temperatures. Eur. J. Biochem. 267:3502-3512.
Goenka, S., B. Raman, T. Ramakrishna, and C. M. Rao. 2001. Unfolding and refolding of a quinone oxidoreductase: α-crystallin, a molecular chaperone, assists its reactivation. Biochem. J. 359:547-556.
Goldberg, M. E., N. Expert-Bezançon, L. Vuillard, and T. Rabilloud. 1995. Non-detergent sulphobetaines: a new class of molecules that facilitate in vitro protein renaturation. Fold. Des. 1:21-27.
Gupta, G. S., and B. P. Kang. 1997. LDH-C4-substrate binary complexes studied by intrinsic fluorescence method. Indian J. Biochem. Biophys. 34:307-312.
Hakansson, K., A. J. Doherty, S. Shuman, and D. B. Wigley. 1997. X-ray crystallography reveals a large conformational change during guanyl transfer by mRNA capping enzymes. Cell. 89:545-553.
Ishino, Y., H. Shinagawa, K. Makino, S. Tsunasawa, F. Sakiyama, and A. Nakata. 1986. Nucleotide sequence of the lig gene and primary structure of DNA ligase of Escherichia coli. Mol. Gen. Genet. 204:1-7.
Kaczorowski, T., and W. Szybalski. 1996. Co-operativity of hexamer ligation. Gene. 179:189-193.
Kube, D., T. V. Esakova, M. V. Ivanov, A. I. Gromov, and N. K. Nagradova. 1987. Detection of ligand-induced conformation changes in lactate dehydrogenase by using fluorescent probes. Biokhimiia. 52:179-187.
Kuznetsova, I. M., O. V. Stepanenko, K. K. Turoverov, L. Zhu, J. M. Zhou, A. L. Fink, and V. N. Uversky. 2002. Unraveling multistate unfolding of rabbit muscle creatine kinase. Biochim. Biophys. Acta. 1596:138-155.
Lakowicz, J. 1983. Fluorescence quenching. In Principles of Fluorescence Spectroscopy. J. R. Lakowicz, editor. Plenum Press, New York. 257-301.
Lee, J. Y., C. Chang, H. K. Song, J. Moon, J. K. Yang, H. K. Kim, S. T. Kwon, and S. W. Suh. 2000. Crystal structure of NAD+-dependent DNA ligase: modular architecture and functional implications. EMBO J. 19:1119-1129.
Lehman, I. R. 1974. DNA ligase: structure, mechanism, and function. Science. 186:790-797.
Levitt, M. 1992. Accurate modeling of protein conformation by automatic segment matching. J. Mol. Biol. 226:507-533.
Marchal, S., and G. Branlant. 1999. Evidence for the chemical activation of essential cys-302 upon cofactor binding to nonphosphorylating glyceraldehyde 3-phosphate dehydrogenase from Streptococcus mutans. Biochemistry. 38:12950-12958.
Martin, I. V., and S. A. MacNeill. 2002. ATP-dependent DNA ligases. Genome Biol. 3:3005.1-3005.7.
Matouschek, A., J. M. Matthews, C. M. Johnson, and A. R. Fersht. 1994. Extrapolation to water of kinetic and equilibrium data for the unfolding of barnase in urea solutions. Protein Eng. 7:1089-1095.
Mayr, L. M., and F. X. Schmid. 1993. Stabilization of a protein by guanidinium chloride. Biochemistry. 32:7994-7998.
Modrich, P., Y. Anraku, and I. R. Lehman. 1973. Deoxyribonucleic acid ligase. Isolation and physical characterization of the homogeneous enzyme from Escherichia coli. J. Biol. Chem. 248:7495-7501.
Morimatsu, K., T. Horii, and M. Takahashi. 1995. Interaction of Tyr103 and Tyr264 of the RecA protein with DNA and nucleotide cofactors. Fluorescence study of engineered proteins. Eur. J. Biochem. 228:779-785.
Munishkina, L. A., C. Phelan, V. N. Uversky, and A. L. Fink. 2003. Conformational behavior and aggregation of a-synuclein in organic solvents: modeling the effects of membranes. Biochemistry. 42:2720-2730.
Murataliev, M. B., and R. Feyereisen. 2000. Functional interactions in cytochrome P450BM3. Evidence that NADP(H) binding controls redox potentials of the flavin cofactors. Biochemistry. 39:12699-12707.
Myers, J. K., C. N. Pace, and J. M. Scholtz. 1995. Denaturant m values and heat capacity changes: relation to changes in accessible surface areas of protein unfolding. Protein Sci. 4:2138-2148.
Pace, C. N. 1986. Determination and analysis of urea and guanidine hydrochloride denaturation curves. Methods Enzymol. 131:266-280.
Pace, C. N. 1990. Measuring and increasing protein stability. Trends Biotechnol. 8:93-98.
Panasenko, S. M., R. J. Alazard, and I. R. Lehman. 1978. A simple, three-step procedure for the large scale purification of DNA ligase from a hybrid lambda lysogen constructed in vitro. J. Biol. Chem.253:4590-4592.
Pearson, W. R. 1996. Effective protein sequence comparison. Methods Enzymol. 266:227-258.
Permyakov, E. A., V. V. Yarmolenko, V. I. Emelyanenko, E. A. Burstein, J. Closset, and C. Gerday. 1980. Fluorescence studies of the calcium binding to whiting (Gadus merlangus) parvalbumin. Eur. J. Biochem. 109:307-315.
Ptitsyn, O. B. 1995. Molten globule and protein folding. Adv. Protein Chem. 47:83-229.
Royer, C. A., C. J. Mann, and C. R. Matthews. 1993. Resolution of the fluorescence equilibrium unfolding profile of trp aporepressor using single tryptophan mutants. Protein Sci. 2:1844-1852.
Semisotnov, G. V., N. A. Rodionova, O. I. Razgulyaev, V. N. Uversky, A. F. Gripas, and R. I. Gilmanshin. 1991. Study of the "molten globule" intermediate state in protein folding by a hydrophobic fluorescent probe. Biopolymers. 31:119-128.
Shepherd, G. B., and G. G. Hammes. 1976. Fluorescence energy transfer measurements between ligand binding sites of the pyruvate dehydrogenase multienzyme complex. Biochemistry. 15:311-317.
Shuman, S. 1995. Vaccinia virus DNA ligase: specificity, fidelity, and inhibition. Biochemistry. 34:16138-16147.
Shuman, S., and B. Schwer. 1995. RNA capping enzyme and DNA ligase: a superfamily of covalent nucleotidyl transferases. Mol. Microbiol. 17:405-410.
Singleton, M. R., K. Hakansson, D. J. Timson, and D. B. Wigley. 1999. Structure of the adenylation domain of an NAD+-dependent DNA ligase. Structure. 7:35-42.
Sinha, K. M., M. Ghosh, I. Das, and A. K. Datta. 1999. Molecular cloning and expression of adenosine kinase from Leishmania donovani: identification of unconventional P-loop motif. Biochem. J. 339:667-673.
Sriskanda, V., and S. Shuman. 2002. Conserved residues in domain Ia are required for the reaction of Escherichia coli DNA ligase with NAD+. J. Biol. Chem. 277:9695-9700.
Takahashi, M., and T. Uchida. 1986. Thermophilic HB8 DNA ligase: effects of polyethylene glycols and polyamines on blunt-end ligation of DNA. J. Biochem. 100:123-131.
Tang, C. K., C. E. Jeffers, J. C. Nichols, and S. C. Tu. 2001. Flavin specificity and subunit interaction of Vibrio fischeri general NAD(P)H-flavin oxidoreductase FRG/FRase I. Arch. Biochem. Biophys. 392:110-116.
Thorbjarnardóttir, S. H., Z. O. Jónsson, O. S. Andresson, J. K. Kristjánsson, G. Eggertsson, and A. Pálsdóttir. 1995. Cloning and sequence analysis of the DNA ligase-encoding gene of Rhodothermus marinus, and overproduction, purification and characterization of two thermophilic DNA ligases. Gene. 161:1-6.
Timson, D. J., M. R. Singleton, and D. B. Wigley. 2000. DNA ligases in the repair and replication of DNA. Mutat. Res. 460:301-318.
Timson, D. J., and D. B. Wigley. 1999. Functional domains of an NAD +-dependent DNA ligase. J. Mol. Biol. 285:73-83.
Uversky, V. N. 1993. Use of fast protein size-exclusion liquid chromatography to study the unfolding of proteins which denature through the molten globule. Biochemistry. 32:13288-13298.
Uversky, V. N. 2002a. Cracking the folding code. Why do some proteins adopt partially folded conformations, whereas other don't? FEBS Lett. 514:181-183.
Uversky, V. N. 2002b. What does it mean to be natively unfolded? Eur. J. Biochem. 269:2-12.
Uversky, V. N., and A. L. Fink. 2002. The chicken-egg scenario of protein folding revisited. FEBS Lett. 515:79-83.
Uversky, V. N., L. N. Garriques, I. S. Millett, S. Frokjaer, J. Brange, S. Doniach, and A. L. Fink. 2003. Prediction of the association state of insulin using spectral parameters. J. Pharm. Sci. 92:847-858.
Uversky, V. N., and O. B. Ptitsyn. 1994. Partly folded state, a new equilibrium state of protein molecules: four-state guanidinium chloride-induced unfolding of β-lactamase at low temperature. Biochemistry. 33:2782-2791.
Uversky, V. N., and O. B. Ptitsyn. 1996. Further evidence on the equilibrium "pre-molten globule state": four-state guanidinium chloride-induced unfolding of carbonic anhydrase B at low temperature. J. Mol. Biol. 255:215-228.
Vanhove, M., G. Guillaume, P. Ledent, J. H. Richards, R. H. Pain, and J. M. Frere. 1997. Kinetic and thermodynamic consequences of the removal of the Cys-77-Cys-123 disulphide bond for the folding of TEM-1 β-lactamase. Biochem. J. 321:413-417.
Vassilenko, K. S., and V. N. Uversky. 2002. Native-like secondary structure of molten globules. Biochim. Biophys. Acta. 1594:168-177.
Wilkinson, A., J. Day, and R. Bowater. 2001. Bacterial DNA ligases. Mol. Microbiol. 40:1241-1248.
Zimmerman, S. B., and B. H. Pheiffer. 1983. Macromolecular crowding allows blunt-end ligation by DNA ligases from rat liver or Escherichia coli. Proc. Natl. Acad. Sci. USA. 80:5852-5856.
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.