Wildlife survey; Unmanned Aerial Systems; Aerial inventory; Direct georeferencing
Résumé :
[fr] La protection et la gestion raisonnée des écosystèmes naturels passent par la nécessité de quantifier l'importance des populations animales. Les inventaires de la grande faune, traditionnellement des inventaires aériens par échantillonnage, pourraient être avantageusement remplacés par des inventaires utilisant de petits avions sans pilote (avions ou hélicoptères téléguidés avec appareil photo embarqué). Bien que l'utilisation de drones comme outils d'inventaire des grands mammifères ait déjà été mis en œuvre par le passé, certaines questions persistent, notamment la manière la plus adéquate de déterminer la surface de la bande inventoriée. La surface inventoriée est en effet une information capitale pour le calcul de la densité d'animaux ainsi que de leurs effectif total. La surface de la bande photographiée peut se calculer selon différentes approches en fonction des informations et outils utilisés pour le géoréférencement du bloc d'images. Deux méthodes utilisant les données de navigation du drone (GPS et attitude) sont comparées dans cet article, l'une utilisant les équations de colinéarité afin de projeter individuellement l'emprise (fauchée) de chaque image sur le sol et l'autre utilisant des outils de vision par ordinateur et de photogrammétrie afin de déterminer l'orientation du bloc d'images. Les surfaces estimées selon ces méthodes furent comparées à une surface de référence, calculée au moyen du géoréférencement du bloc d'image avec des points d'appuis. La méthode de projection des fauchées, bien que plus simple à mettre en œuvre, s'avère à la fois la plus rapide et la plus précise en terrain à faible dénivelé et répond correctement aux attentes relatives aux inventaires faunique [en] Conservation of natural ecosystems requires regular monitoring of biodiversity, including the estimation of wildlife density. Recently, unmanned aerial systems (UAS) have become more available for numerous civilian applications. The use of small drones for wildlife surveys as a surrogate for manned aerial surveys is becoming increasingly attractive and has already been implemented with some success. This raises the question of how to process UAS imagery in order to determine the surface area of sampling strips within an acceptable confidence
level. For the purpose of wildlife surveys, the estimation of sampling strip surface area needs to be both accurate and quick, and easy to implement. As GPS and an inertial measurement units are commonly integrated within unmanned aircraft platforms, two methods of direct georeferencing were compared here. On the one hand, we used the image footprint projection (IFP) method, which utilizes collinearity equations on each image individually. On the other hand, the Structure from Motion (SfM) technique was used for block orientation and georeferencing. These two methods were compared on eight sampling strips. An absolute orientation of the strip was determined by indirect georeferencing using ground control points. This absolute orientation was considered as the reference and was used for validating the other two methods. The IFP method was demonstrated to be the most accurate and the easiest to implement. It was also found to be less demanding in terms of image quality and overlap. However, even though a flat landscape is the type most widely encountered in wildlife surveys in Africa, we recommend estimating IFP sensitivity at an accentuation of the relief.
Disciplines :
Sciences du vivant: Multidisciplinaire, généralités & autres
Auteur, co-auteur :
Lisein, Jonathan ; Université de Liège - ULiège > Forêts, Nature et Paysage > Gestion des ressources forestières et des milieux naturels
Linchant, Julie ; Université de Liège - ULiège > Forêts, Nature et Paysage > Laboratoire de Foresterie des régions trop. et subtropicales
Lejeune, Philippe ; Université de Liège - ULiège > Forêts, Nature et Paysage > Gestion des ressources forestières et des milieux naturels
Bouché, Philippe
Vermeulen, Cédric ; Université de Liège - ULiège > Forêts, Nature et Paysage > Laboratoire de Foresterie des régions trop. et subtropicales
Langue du document :
Anglais
Titre :
Aerial surveys using an Unmanned Aerial System (UAS): comparison of different methods for estimating the surface area of sampling strips
Jachmann, H. 2001. Estimating abundance of African wildlife: an aid to adaptive management, Kluwer Academic Publishers, Boston.
Jachmann, H. 2008. Evaluation of four survey methods for estimating elephant densities. African Journal of Ecology 29:188-195.
Norton-Griffiths, M. 1978. Counting animals, African Wildlife Leadership Foundation, Nairobi, Kenya.
Bouché, P., Lejeune, P. and Vermeulen, C. 2012. How to count elephants in West African savannahs? Synthesis and comparison of main gamecount methods. BASE 16:77-91.
Watts, A. C., Perry, J. H., Smith, S. E., Burgess, M. A., Wilkinson, B. E., Szantoi, Z., Ifju, P. G. and Percival, H. F. 2010. Small Unmanned Aircraft Systems for Low-Altitude Aerial Surveys. The Journal of Wildlife Management 74:1614-1619.
Wilkinson, B. E. 2007. The design of georeferencing techniques for an unmanned autonomous aerial vehicle for use with wildlife inventory surveys: A case study of the National Bison Range, Montana., M.S. thesis, University of Florida, Florida.
Vermeulen, C., Lejeune, P., Lisein, J., Sawadogo, P. and Bouché, P. 2013. Unmanned Aerial Survey of Elephants. PLoS ONE 8:e54700.
Dunham, K. M. 2012. Trends in populations of elephant and other large herbivores in Gonarezhou National Park, Zimbabwe, as revealed by sample aerial surveys. Afr. J. Ecol.
Ferreira, S. M. and Aarde, R. J. 2009. Aerial survey intensity as a determinant of estimates of African elephant population sizes and trends. South African Journal of Wildlife Research 39:181-191.
Bouché, P., Douglas-Hamilton, I., Wittemyer, G., Nianogo, A. J., Doucet, J.-L., Lejeune, P. and Vermeulen, C. 2011. Will Elephants Soon Disappear from West African Savannahs? PLoS ONE 6:e20619.
Dunford, R., Michel, K., Gagnage, M., Piegay, H. and Tremelo, M. L. 2009. Potential and constraints of Unmanned Aerial Vehicle technology for the characterization of Mediterranean riparian forest. International Journal of Remote Sensing 30:4915-4935.
Martin, J., Edwards, H. H., Burgess, M. A., Percival, H. F., Fagan, D. E., Gardner, B. E., Ortega-Ortiz, J. G., Ifju, P. G., Evers, B. S. and Rambo, T. J. 2012. Estimating Distribution of Hidden Objects with Drones: From Tennis Balls to Manatees. PLoS ONE 7:e38882.
Turner, D., Lucieer, A. and Watson, C. 2012. An Automated Technique for Generating Georectified Mosaics from Ultra-High Resolution Unmanned Aerial Vehicle (UAV) Imagery, Based on Structure from Motion (SfM) Point Clouds. Remote Sensing 4:1392-1410.
Finn, R. L. and Wright, D. 2012. Unmanned aircraft systems: Surveillance, ethics and privacy in civil applications. Computer Law and Security Review 28:184-194.
Eisenbeiss, H. 2009. UAV photogrammetry, ETH, Zurich.
Haarbrink, R. and Koers, E. 2006. Helicopter UAV for photogrammetry and rapid response. In 2nd Int. Workshop" The Future of Remote Sensing", ISPRS Inter-Commission Working Group I/V Autonomous Navigation, p 1.
Hunt, E. R., Hively, W. D., Fujikawa, S. J., Linden, D. S., Daughtry, C. S. T. and McCarty, G. W. 2010. Acquisition of NIR-Green-Blue Digital Photographs from Unmanned Aircraft for Crop Monitoring. Remote Sensing 2:290-305.
Lelong, C. C. D., Burger, P., Jubelin, G., Roux, B., Labbé, S. and Baret, F. 2008. Assessment of unmanned aerial vehicles imagery for quantitative monitoring of wheat crop in small plots. Sensors 8:3557-3585.
Sugiura, R., Noguchi, N. and Ishii, K. 2005. Remote-sensing Technology for Vegetation Monitoring using an Unmanned Helicopter. Biosystems Engineering 90:369-379.
Niethammer, U., James, M. R., Rothmund, S., Travelletti, J. and Joswig, M. 2012. UAV-based remote sensing of the Super-Sauze landslide: Evaluation and results. Engineering Geology 128:2-11.
Westoby, M. J., Brasington, J., Glasser, N. F., Hambrey, M. J. and Reynolds, J. M. 2012. "Structure-from-Motion"photogrammetry: A low-cost, effective tool for geoscience applications. Geomorphology.
Verhoeven, G., Doneus, M., Briese, C., Vermeulen, F. 2012. Mapping by matching: A computer vision-based approach to fast and accurate georeferencing of archaeological aerial photographs. Journal of Archaeological Science 39:2060-2070.
Getzin, S., Wiegand, K. and Schöning, I. 2012. Assessing biodiversity in forests using very high-resolution images and unmanned aerial vehicles. Methods in Ecology and Evolution 3:397-404.
Hardin, P. J. and Hardin, T. J. 2010. Small Scale Remotely Piloted Vehicles in Environmental Research. Geography Compass 4:1297-1311.
Lejot, J., Delacourt, C., Piégay, H., Fournier, T., Trémélo, M.-L. and Allemand, P. 2007. Very high spatial resolution imagery for channel bathymetry and topography from an unmanned mapping controlled platform. Earth Surface Processes and Landforms 32:1705-1725.
Israel, M. 2011. A UAV-based roe deer fawn detection system. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences XXXVIII-1.
Jones, G. P., Pearlstine, L. G. and Percival, H. F. 2006. An assessment of small unmanned aerial vehicles for wildlife research. Wildlife Society Bulletin 34:750-758.
Koski, W. R., Allen, T., Ireland, D., Buck, G., Smith, P. R., Macrender, A. M., Halick, M. A., Rushing, C., Sliwa, D. J. and McDonald, T. L. 2009. Evaluation of an unmanned airborne system for monitoring marine mammals. Aquatic Mammals 35:347-357.
Chabot, D. and Bird, D. M. 2012. Evaluation of an off-the-shelf Unmanned Aircraft System for Surveying Flocks of Geese. Waterbirds 35:170-174.
Sarda-Palomera, F., Bota, G., Vińolo, C., Pallarés, O., Sazatornil, V., Brotons, L., Gomáriz, S. and Sardŕ, F. 2012. Fine-scale bird monitoring from light unmanned aircraft systems. Ibis 154:177-183.
Koh, L. P. and Wich, S. A. 2012. Dawn of drone ecology: low-cost autonomous aerial vehicles for conservation. Tropical Conservation Science 5:121-132.
Anderson, K. and Gaston, K. J. 2013. Lightweight unmanned aerial vehicles will revolutionize spatial ecology. Frontiers in Ecology and the Environment.
Xiang, H. and Tian, L. 2011. Development of a low-cost agricultural remote sensing system based on an autonomous unmanned aerial vehicle (UAV). Biosystems Engineering.
Berni, J., Zarco-Tejada, P., Surez, L., González-Dugo, V. and Fereres, E. 2008. Remote sensing of vegetation from uav platforms using lightweight multispectral and thermal imaging sensors. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XXXVII.
Harwin, S. and Lucieer, A. 2012. Assessing the accuracy of georeferenced point clouds produced via multi-view stereopsis from Unmanned Aerial Vehicle (UAV) imagery. Remote Sensing 4:1573-1599.
Zhang, Y., Xiong, J. and Hao, L. 2011. Photogrammetric processing of low-altitude images acquired by unpiloted aerial vehicles. The Photogrammetric Record 26:190-211.
Watts, A. C., Ambrosia, V. G. and Hinkley, E. A. 2012. Unmanned Aircraft Systems in Remote Sensing and Scientific Research: Classification and Considerations of Use. Remote Sensing 4:1671-1692.
Snavely, N., Seitz, S. M. and Szeliski, R. 2008. Modeling the World from Internet Photo Collections. International Journal of Computer Vision 80:189-210.
Wolf, P. R. and Dewitt, B. A. 2000. Elements of Photogrammetry: with applications in GIS, McGraw-Hill New York, NY, USA.
Perry, J. H. 2009. A synthesized directly georeferenced remote sensing technique for small unmanned aerial vehicles, M.S. thesis, University of Florida.
Moran, M. S., Inoue, Y. and Barnes, E. 1997. Opportunities and limitations for image-based remote sensing in precision crop management. Remote Sensing of Environment 61:319-346.
Barazzetti, L., Remondino, F. and Scaioni, M. 2010. Automation in 3D reconstruction: Results on different kinds of close-range blocks. In ISPRS Commission V Symposium Int. Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, Newcastle upon Tyne, UK.
Cramer, M., Stallmann, D. and Haala, N. 2000. Direct Georeferencing Using Gps/inertial Exterior Orientations For Photogrammetric Applications. International Archives of Photogrammetry and Remote Sensing 198-205.
Läbe, T. and Förstner, W. 2004. Geometric stability of low-cost digital consumer cameras. In Proceedings of the 20th ISPRS Congress, Istanbul, Turkey, pp 528-535.
Sanz-Ablanedo, E., Rodriguez-Pérez, J. R., Armesto, J. and Taboada, M. F. A. 2010. Geometric Stability and Lens Decentering in Compact Digital Cameras. Sensors 10:1553-1572.
Lowe, D. G. 2004. Distinctive image features from scale-invariant keypoints. International journal of computer vision 60:91-110.
Triggs, B., McLauchlan, P., Hartley, R. and Fitzgibbon, A. 2000. Bundle adjustment-a modern synthesis. Vision algorithms: theory and practice 153-177.
Fonstad, M. A., Dietrich, J. T., Courville, B. C., Jensen, J. L. and Carbonneau, P. E. 2013. Topographic structure from motion: a new development in photogrammetric measurement. Earth Surface Processes and Landforms 38:421-430.
Chabot, D. 2009. Systematic evaluation of a stock unmanned aerial vehicle (UAV) system for small-scale wildlife survey applications, M.S. thesis, Mcgill University, Montreal, Quebec, Canada.