methane; milk MIR spectra; dairy cows; herd x test-day effect
Abstract :
[en] The aim of this study was to estimate the herd-test-day (HTD) effect on milk yield, fat and protein content, and methane (CH4) emissions of Walloon Holstein first-parity cows. A total of 412,520 test-day records and milk mid-infrared (MIR) spectra of 69,223 cows in 1,104 herds were included in the data set. The prediction equation developed by Vanlierde et al. (Abstract submitted to EAAP 2013; R² of cross-validation=0.70) was applied on the recorded spectral data to predict CH4 emissions (g/d). Daily CH4 emissions expressed in g/kg of milk were computed by dividing CH4 emissions (g/d) by daily milk yield of cows. Several bivariate (a CH4 trait with a production trait) random regression test-day models including HTD and classes of days in milk and age at calving as fixed effects and permanent environment and genetic as random effects were used. HTD solutions of studied traits obtained from these models were studied and presented large deviations (CV=17.54%, 8.93%, 4.68%, 15.51%, and 23.18% for milk yield, fat and protein content, MIR CH4 (g/d), and MIR CH4 (g/kg of milk), respectively) indicating differences among herds, especially for milk yield and CH4 traits. HTD means per month of milk yield and fat and protein contents presented similar patterns within year. The maximum of monthly HTD means corresponded to the spring (pastern release) for milk yield and to the winter for fat and protein contents. The minimum corresponded to the month of November for milk yield and to the summer for the other traits. For MIR CH4 (g/d), monthly HTD means showed similar patterns as fat and protein content within year. MIR CH4 (g/kg of milk) presented maximum values of monthly HTD means in November and minimum values in May. Finally, results of this study showed that HTD effects on milk production traits and on MIR CH4 emissions varied through herds and seasons.