[en] Xylanases are hydrolytic enzymes which randomly cleave the beta 1,4 backbone of the complex plant cell wall polysaccharide xylan. Diverse forms of these enzymes exist, displaying varying folds, mechanisms of action, substrate specificities, hydrolytic activities (yields, rates and products) and physicochemical characteristics. Research has mainly focused on only two of the xylanase containing glycoside hydrolase families, namely families 10 and 11, yet enzymes with xylanase activity belonging to families 5, 7, 8 and 43 have also been identified and studied, albeit to a lesser extent. Driven by industrial demands for enzymes that can operate under process conditions, a number of extremophilic xylanases have been isolated, in particular those from thermophiles, alkaliphiles and acidiphiles, while little attention has been paid to cold-adapted xylanases. Here, the diverse physicochemical and functional characteristics, as well as the folds and mechanisms of action of all six xylanase containing families will be discussed. The adaptation strategies of the extremophilic xylanases isolated to date and the potential industrial applications of these enzymes will also be presented.
Disciplines :
Biochemistry, biophysics & molecular biology
Author, co-author :
Collins, T.
Gerday, Charles ; Université de Liège - ULiège > Services généraux (Faculté des sciences) > Relations académiques et scientifiques (Sciences)
Feller, Georges ; Université de Liège - ULiège > Département des sciences de la vie > Labo de biochimie
Language :
English
Title :
Xylanases, xylanase families and extremophilic xylanases
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
R.A. Prade Xylanases: from biology to biotechnology Biotech. Genet. Eng. Rev. 13 1995 100 131
R. Whistler, and E. Masek Enzymatic hydrolysis of xylan J. Am. Chem. Soc. 77 1955 1241 1243
D. Shallom, and Y. Shoham Microbial hemicellulases Curr. Opin. Microbiol. 6 2003 219 228
N. Kulkarni, A. Shendye, and M. Rao Molecular and biotechnological aspects of xylanases FEMS Microbiol. Rev. 23 1999 411 456
Q.K. Beg, M. Kapoor, L. Mahajan, and G.S. Hoondal Microbial xylanases and their industrial applications: a review Appl. Microbiol. Biotechnol. 56 2001 326 338
S. Singh, A.M. Madlala, and B.A. Prior Thermomyces lanuginosus: properties of strains and their hemicellulases FEMS Microbiol. Rev. 27 2003 3 16
K.K.Y. Wong, L.U.L. Tan, and J.N. Saddler Multiplicity of beta-1,4-xylanases in microorganisms: functions and applications Microbiol. Rev. 52 1988 305 317
K. Li, P. Azadi, R. Collins, J. Tolan, J. Kim, and K. Eriksson Relationships between activities of xylanases and xylan structures Enzyme Microb. Technol. 27 2000 89 94
S.K. Chanda, E.L. Hirst, J.K.N. Jones, and E.G.V. Percival The constitution of xylan from esparto grass J. Chem. Soc. 1950 12889 12897
S. Eda, A. Ohnishi, and K. Kato Xylan isolated from the stalk of Nicotiana tabacum Agric. Biol. Chem. 40 1976 359 364
V. Barry, and T. Dillon Occurence of xylans in marine algae Nature 146 1940 620
J.R. Nunn, H. Parolis, and I. Russel Polysaccharides of the red algae Chaetangium erinaceum. Part I: Isolation and characterization of the water-soluble xylan Carbohydr. Res. 26 1973 169 180
E.G.V. Percival, and S.K. Chanda The xylan of Rhodymenia palmata Nature 166 1950 787 788
J. Puls, O. Schmidt, and C. Granzow Glucuronidase in two microbial xylanolytic systems Enzyme Microb. Technol. 9 1987 83 88
P. Biely Microbial xylanolytic systems Trends Biotechnol. 3 1985 286 290
S. Subramaniyan, and P. Prema Biotechnology of microbial xylanases: enzymology, molecular biology, and application Crit. Rev. Biotechnol. 22 2002 33 64
A. Belancic, J. Scarpa, A. Peirano, R. Diaz, J. Steiner, and J. Eyzaguirre Penicillium purpurogenum produces several xylanases: purification and properties of two of the enzymes J. Biotechnol. 41 1995 71 79
A. Sunna, and G. Antranikian Xylanolytic enzymes from fungi and bacteria Crit. Rev. Biotechnol. 17 1997 39 67
G. Elegir, M. Szakacs, and T.W. Jeffries Purification, characterization and substrate specificities of multiple xylanases from Streptomyces sp. strain B-12-2 Appl. Environ. Microbiol. 60 1994 2609 2615
D.A. Wubah, D.E. Akin, and W.S. Borneman Biology, fiber-degradation, and enzymology of anaerobic zoosporic fungi Crit. Rev. Microbiol. 19 1993 99 115
A. Matte, and C.W. Forsberg Purification, characterization, and mode of action of endoxylanases 1 and 2 from Fibrobacter succinogenes S85 Appl. Environ. Microbiol. 58 1992 157 168
D.O. Krause, S.E. Denman, R.I. Mackie, M. Morrison, A.L. Rae, G.T. Attwood, and C.S. McSweeney Opportunities to improve fiber degradation in the rumen: microbiology, ecology, and genomics FEMS Microbiol. Rev. 27 2003 663 693
H.J. Gilbert, and G.P. Hazlewood Bacterial cellulases and xylanases J. Gen. Microbiol. 139 1993 187 194
H.J. Gilbert, D.A. Sullivan, G. Jenkins, L.E. Kellett, N.P. Minton, and J. Hall Molecular cloning of multiple xylanase genes from Pseudomonas fluorescens subsp. cellulosa J. Gen. Microbiol. 134 Pt 12 1988 3239 3247
R.C. Yang, C.R. MacKenzie, D. Bilous, and S.A. Narang Identification of two distinct Bacillus circulans xylanases by molecular cloning of the genes and expression in Escherichia coli Appl. Environ. Microbiol. 55 1989 568 572
P. Biely, O. Markovic, and D. Mislovicova Sensitive detection of endo-1,4-beta-glucanases and endo-1,4-beta-xylanases in gels Anal. Biochem. 144 1985 147 151
E. Luthi, D.R. Love, J. McAnulty, C. Wallace, P.A. Caughey, D. Saul, and P.L. Bergquist Cloning, sequence analysis, and expression of genes encoding xylan-degrading enzymes from the thermophile Caldocellum saccharolyticum Appl. Environ. Microbiol. 56 1990 1017 1024
H. Zhu, F.W. Paradis, P.J. Krell, J.P. Phillips, and C.W. Forsberg Enzymatic specificities and modes of action of the two catalytic domains of the XynC xylanase from Fibrobacter succinogenes S85 J. Bacteriol. 176 1994 3885 3894
D. Irwin, E.D. Jung, and D.B. Wilson Characterization and sequence of a Thermomonospora fusca xylanase Appl. Environ. Microbiol. 60 1994 763 770
G.W. Black, J.E. Rixon, J.H. Clarke, G.P. Hazlewood, L.M. Ferreira, D.N. Bolam, and H.J. Gilbert Cellulose binding domains and linker sequences potentiate the activity of hemicellulases against complex substrates J. Biotechnol. 57 1997 59 69
S.J. Millward-Sadler, K. Davidson, G.P. Hazlewood, G.W. Black, H.J. Gilbert, and J.H. Clarke Novel cellulose-binding domains, NodB homologues and conserved modular architecture in xylanases from the aerobic soil bacteria Pseudomonas fluorescens subsp. cellulosa and Cellvibrio mixtus Biochem. J. 312 Pt 1 1995 39 48
H. Hayashi, K.I. Takagi, M. Fukumura, T. Kimura, S. Karita, K. Sakka, and K. Ohmiya Sequence of xynC and properties of XynC, a major component of the Clostridium thermocellum cellulosome J. Bacteriol. 179 1997 4246 4253
O. Grepinet, M.C. Chebrou, and P. Beguin Purification of Clostridium thermocellum xylanase Z expressed in Escherichia coli and identification of the corresponding product in the culture medium of C. thermocellum J. Bacteriol. 170 1988 4576 4581
C. Winterhalter, P. Heinrich, A. Candussio, G. Wich, and W. Liebl Identification of a novel cellulose-binding domain within the multidomain 120 kDa xylanase XynA of the hyperthermophilic bacterium Thermotoga maritima Mol. Microbiol. 15 1995 431 444
G.W. Black, J.E. Rixon, J.H. Clarke, G.P. Hazlewood, M.K. Theodorou, P. Morris, and H.J. Gilbert Evidence that linker sequences and cellulose-binding domains enhance the activity of hemicellulases against complex substrates Biochem. J. 319 Pt 2 1996 515 520
N.R. Gilkes, B. Henrissat, D.G. Kilburn, R.C. Miller Jr., and R.A. Warren Domains in microbial 4-glycanases: sequence conservation, function, and enzyme families Microbiol. Rev. 55 1991 303 315
J. Defaye, J.M. Guillot, P. Biely, and M. Vrsanska Positional isomers of thioxylobiose, their synthesis and inducing ability for d-xylan-degrading enzymes in the yeast Cryptococcus albidus Carbohydr. Res. 228 1992 47 64
C.M. Fontes, H.J. Gilbert, G.P. Hazlewood, J.H. Clarke, J.A. Prates, V.A. McKie, T. Nagy, T.H. Fernandes, and L.M. Ferreira A novel Cellvibrio mixtus family 10 xylanase that is both intracellular and expressed under non-inducing conditions Microbiology 146 Pt 8 2000 1959 1967
S. Shulami, O. Gat, A.L. Sonenshein, and Y. Shoham The glucuronic acid utilization gene cluster from Bacillus stearothermophilus T-6 J. Bacteriol. 181 1999 3695 3704
A. Teplitsky, S. Shulami, S. Moryles, Y. Shoham, and G. Shoham Crystallization and preliminary X-ray analysis of an intracellular xylanase from Bacillus stearothermophilus T-6 Acta Crystallogr. D: Biol. Crystallogr. 56 Pt 2 2000 181 184
B. Henrissat, M. Claeyssens, P. Tomme, L. Lemesle, and J.P. Mornon Cellulase families revealed by hydrophobic cluster analysis Gene 81 1989 83 95
B. Henrissat, and P.M. Coutinho Classification of glycoside hydrolases and glycosyltransferases from hyperthermophiles Methods Enzymol. 330 2001 183 201
Coutinho, P.M. and Henrissat, B. (1999) Carbohydrate-active enzyme server (CAZY) at URL: http://afmb.cnrs-mrs.fr/~cazy/CAZY/???
J. Gebler, N.R. Gilkes, M. Claeyssens, D.B. Wilson, P. Beguin, W.W. Wakarchuk, D.G. Kilburn, R.C. Miller Jr., R.A. Warren, and S.G. Withers Stereoselective hydrolysis catalyzed by related beta-1,4-glucanases and beta-1,4-xylanases J. Biol. Chem. 267 1992 12559 12561
M. Claeyssens, and B. Henrissat Specificity mapping of cellulolytic enzymes: classification into families of structurally related proteins confirmed by biochemical analysis Protein Sci. 1 1992 1293 1297
Y. Bourne, and B. Henrissat Glycoside hydrolases and glycosyltransferases: families and functional modules Curr. Opin. Struct. Biol. 11 2001 593 600
A. Torronen, and J. Rouvinen Structural and functional properties of low molecular weight endo-1,4-beta-xylanases J. Biotechnol. 57 1997 137 149
T.W. Jeffries Biochemistry and genetics of microbial xylanases Curr. Opin. Biotechnol. 7 1996 337 342
H.J. Flint, J. Martin, C.A. McPherson, A.S. Daniel, and J.X. Zhang A bifunctional enzyme, with separate xylanase and beta(1,3-1,4)-glucanase domains, encoded by the xynD gene of Ruminococcus flavefaciens J. Bacteriol. 175 1993 2943 2951
D.L. Zechel, and S.G. Withers Glycosidase mechanisms: anatomy of a finely tuned catalyst Acc. Chem. Res. 33 2000 11 18
J.D. McCarter, and S.G. Withers Mechanisms of enzymatic glycoside hydrolysis Curr. Opin. Struct. Biol. 4 1994 885 892
D. Nurizzo, J.P. Turkenburg, S.J. Charnock, S.M. Roberts, E.J. Dodson, V.A. McKie, E.J. Taylor, H.J. Gilbert, and G.J. Davies Cellvibrio japonicus alpha-l-arabinanase 43A has a novel five-blade beta-propeller fold Nat. Struct. Biol. 9 2002 665 668
P.M. Alzari, H. Souchon, and R. Dominguez The crystal structure of endoglucanase CelA, a family 8 glycosyl hydrolase from Clostridium thermocellum Structure 4 1996 265 275
D.M. Guerin, M.B. Lascombe, M. Costabel, H. Souchon, V. Lamzin, P. Beguin, and P.M. Alzari Atomic (0.94 Å) resolution structure of an inverting glycosidase in complex with substrate J. Mol. Biol. 316 2002 1061 1069
S.B. Larson, J. Day, A.P. Barba de la Rosa, N.T. Keen, and A. McPherson First crystallographic structure of a xylanase from glycoside hydrolase family 5: implications for catalysis Biochemistry 42 2003 8411 8422
L. Lo Leggio, S. Kalogiannis, M.K. Bhat, and R.W. Pickersgill High resolution structure and sequence of T. aurantiacus xylanase I: implications for the evolution of thermostability in family 10 xylanases and enzymes with (beta)alpha-barrel architecture Proteins 36 1999 295 306
J. Nolling, G. Breton, M.V. Omelchenko, K.S. Makarova, Q. Zeng, R. Gibson, H.M. Lee, J. Dubois, D. Qiu, J. Hitti, Y.I. Wolf, R.L. Tatusov, F. Sabathe, L. Doucette-Stamm, P. Soucaille, M.J. Daly, G.N. Bennett, E.V. Koonin, and D.R. Smith Genome sequence and comparative analysis of the solvent-producing bacterium Clostridium acetobutylicum J. Bacteriol. 183 2001 4823 4838
A.C. da Silva, J.A. Ferro, F.C. Reinach, C.S. Farah, L.R. Furlan, R.B. Quaggio, C.B. Monteiro-Vitorello, M.A. Van Sluys, N.F. Almeida, L.M. Alves, A.M. do Amaral, M.C. Bertolini, L.E. Camargo, G. Camarotte, F. Cannavan, J. Cardozo, F. Chambergo, L.P. Ciapina, R.M. Cicarelli, L.L. Coutinho, J.R. Cursino-Santos, H. El-Dorry, J.B. Faria, A.J. Ferreira, R.C. Ferreira, M.I. Ferro, E.F. Formighieri, M.C. Franco, C.C. Greggio, A. Gruber, A.M. Katsuyama, L.T. Kishi, R.P. Leite, E.G. Lemos, M.V. Lemos, E.C. Locali, M.A. Machado, A.M. Madeira, N.M. Martinez-Rossi, E.C. Martins, J. Meidanis, C.F. Menck, C.Y. Miyaki, D.H. Moon, L.M. Moreira, M.T. Novo, V.K. Okura, M.C. Oliveira, V.R. Oliveira, H.A. Pereira, A. Rossi, J.A. Sena, C. Silva, R.F. de Souza, L.A. Spinola, M.A. Takita, R.E. Tamura, E.C. Teixeira, R.I. Tezza, M. Trindade dos Santos, D. Truffi, S.M. Tsai, F.F. White, J.C. Setubal, and J.P. Kitajima Comparison of the genomes of two Xanthomonas pathogens with differing host specificities Nature 417 2002 459 463
F. Kunst, N. Ogasawara, I. Moszer, A.M. Albertini, G. Alloni, V. Azevedo, M.G. Bertero, P. Bessieres, A. Bolotin, S. Borchert, R. Borriss, L. Boursier, A. Brans, M. Braun, S.C. Brignell, S. Bron, S. Brouillet, C.V. Bruschi, B. Caldwell, V. Capuano, N.M. Carter, S.K. Choi, J.J. Codani, I.F. Connerton, and A. Danchin The complete genome sequence of the gram-positive bacterium Bacillus subtilis Nature 390 1997 249 256
J. Xu, M.K. Bjursell, J. Himrod, S. Deng, L.K. Carmichael, H.C. Chiang, L.V. Hooper, and J.I. Gordon A genomic view of the human-Bacteroides thetaiotaomicron symbiosis Science 299 2003 2074 2076
T.R. Whitehead Analyses of the gene and amino acid sequence of the Prevotella (Bacteroides) ruminicola 23 xylanase reveals unexpected homology with endoglucanases from other genera of bacteria Curr. Microbiol. 27 1993 27 33
F. Foong, T. Hamamoto, O. Shoseyov, and R.H. Doi Nucleotide sequence and characteristics of endoglucanase gene engB from Clostridium cellulovorans J. Gen. Microbiol. 137 Pt 7 1991 1729 1736
K.K. Cho, S.C. Kim, J.H. Woo, J.D. Bok, and Y.J. Choi Molecular cloning and expression of a novel family A endoglucanase gene from Fibrobacter succinogenes S85 in Escherichia coli Enzyme Microb. Technol. 27 2000 475 481
D.M. Poole, G.P. Hazlewood, J.l. Laurie, P.J. Barker, and H.J. Gilbert Nucleotide sequence of the Ruminococcus albus SY3 endoglucanase genes celA and celB Mol. Gen. Genet. 223 2 1990 217 230
Saloheimo, M., Siika-aho, M., Tenkanen, M. and Penttila, M.E. (2003) Novel xylanase from Trichoderma reesei, method for production thereof, and methods employing this enzyme. In: United States Patent Application 20030054518
M. Tenkanen, M. Burgermeister, M. Vrsanska, P. Biely, M. Saloheimo, and M. Siika-aho A novel xylanase XYN IV from Trichoderma reesei and its action on different xylans C.M. Courtin W.S. Veraverbeke J.A. Delcour Recent Advances in Enzymes in Grain Processing 2003 Kat. Univ. Leuven Leuven 41 46
E.J. Braun, and C.A. Rodrigues Purification and properties of an endoxylanase from a corn stalk rot strain of Erwinia chrysanthemi Phytopathology 83 1993 332 338
N.T. Keen, C. Boyd, and B. Henrissat Cloning and characterization of a xylanase gene from corn strains of Erwinia chrysanthemi Mol. Plant Microbe Interact. 9 1996 651 657
J.C. Hurlbert, and J.F. Preston 3rd Functional characterization of a novel xylanase from a corn strain of Erwinia chrysanthemi J. Bacteriol. 183 2001 2093 2100
T. Suzuki, K. Ibata, M. Hatsu, K. Takamizawa, and K. Keiichi Cloning and expression of a 58-kDa xylanase VI gene (xynD) of Aeromonas caviae ME-1 in Escherichia coli which is not categorized as a family F or family G xylanase J. Fermen. Bioeng. 84 1997 86 89
N.J. Mulder, R. Apweiler, T.K. Attwood, A. Bairoch, D. Barrell, A. Bateman, D. Binns, M. Biswas, P. Bradley, P. Bork, P. Bucher, R.R. Copley, E. Courcelle, U. Das, R. Durbin, L. Falquet, W. Fleischmann, S. Griffiths-Jones, D. Haft, N. Harte, N. Hulo, D. Kahn, A. Kanapin, M. Krestyaninova, R. Lopez, I. Letunic, D. Lonsdale, V. Silventoinen, S.E. Orchard, M. Pagni, D. Peyruc, C.P. Ponting, J.D. Selengut, F. Servant, C.J. Sigrist, R. Vaughan, and E.M. Zdobnov The InterPro Database, 2003 brings increased coverage and new features Nucleic Acids Res. 31 2003 315 318
K. Nishitani, and D.J. Nevins Glucuronoxylan xylanohydrolase. A unique xylanase with the requirement for appendant glucuronosyl units J. Biol. Chem. 266 1991 6539 6543
P. Biely, M. Vrsanska, L. Kremnicky, M. Tenkanen, K. Poutanen, and M. Hayn Catalytic properties of endo-b-1,4-xylanases of Trichoderma reesei P. Suominen T. Reinikainen Trichoderma reesei Cellulases and Other Hydrolases 1993 Fagepaino Oy Helsinki 125 135
T. Parkkinen, N. Hakulinen, M. Tenkanen, M. Siika-aho, and J. Rouvinen Crystallization and preliminary X-ray analysis of a novel Trichoderma reesei xylanase IV belonging to glycoside hydrolase family 5 Acta Crystallogr. D: Biol. Crystallogr. 60 2004 542 544
H. Takami, K. Nakasone, Y. Takaki, G. Maeno, R. Sasaki, N. Masui, F. Fuji, C. Hirama, Y. Nakamura, N. Ogasawara, S. Kuhara, and K. Horikoshi Complete genome sequence of the alkaliphilic bacterium Bacillus halodurans and genomic sequence comparison with Bacillus subtilis Nucleic Acids Res. 28 2000 4317 4331
H. Takami, and K. Horikoshi Analysis of the genome of an alkaliphilic Bacillus strain from an industrial point of view Extremophiles 4 2000 99 108
Dutron, A., Georis, J., Genot, B., Dauvrin, T., Collins, T., Hoyoux, A. and Feller, G. (2004) Use of family 8 enzymes with xylanolytic activity in baking. In: World Intellectual Property Organization, PCT, WO 2004/023879 A1
T. Collins, M.A. Meuwis, I. Stals, M. Claeyssens, G. Feller, and C. Gerday A novel family 8 xylanase: functional and physico-chemical characterization J. Biol. Chem. 277 2002 35133 35139
T. Collins, M.A. Meuwis, C. Gerday, and G. Feller Activity, stability and flexibility in glycosidases adapted to extreme thermal environments J. Mol. Biol. 328 2003 419 428
F. Van Petegem, T. Collins, M.A. Meuwis, C. Gerday, G. Feller, and J. Van Beeumen Crystallization and preliminary X-ray analysis of a xylanase from the psychrophile Pseudoalteromonas haloplanktis Acta Crystallogr. D: Biol. Crystallogr. 58 2002 1494 1496
F. Van Petegem, T. Collins, M.A. Meuwis, C. Gerday, G. Feller, and J. Van Beeumen The structure of a cold-adapted family 8 xylanase at 1.3 Å resolution. Structural adaptations to cold and investgation of the active site J. Biol. Chem. 278 2003 7531 7539
K.H. Yoon, H.N. Yun, and K.H. Jung Molecular cloning of a Bacillus sp. KK-1 xylanase gene and characterization of the gene product Biochem. Mol. Biol. Int. 45 1998 337 347
G. Parsiegla, M. Juy, C. Reverbel-Leroy, C. Tardif, J.P. Belaich, H. Driguez, and R. Haser The crystal structure of the processive endocellulase CelF of Clostridium cellulolyticum in complex with a thiooligosaccharide inhibitor at 2.0 Å resolution EMBO J. 17 1998 5551 5562
M.P. Egloff, J. Uppenberg, L. Haalck, and H. van Tilbeurgh Crystal structure of maltose phosphorylase from Lactobacillus brevis: unexpected evolutionary relationship with glucoamylases Structure (Camb) 9 2001 689 697
H.P. Fierobe, C. Bagnara-Tardif, C. Gaudin, F. Guerlesquin, P. Sauve, A. Belaich, and J.P. Belaich Purification and characterization of endoglucanase C from Clostridium cellulolyticum. Catalytic comparison with endoglucanase A Eur. J. Biochem. 217 1993 557 565
P. Biely Diversity of microbial endo-b-1,4-xylanases S.D. Mansfield J.N. Saddler Applications of Enzymes to Lignocellulosics 2003 American chemical Society Washington 361 380
N.R. Gilkes, M. Claeyssens, R. Aebersold, B. Henrissat, A. Meinke, H.D. Morrison, D.G. Kilburn, R.A. Warren, and R.C. Miller Jr. Structural and functional relationships in two families of beta-1,4-glycanases Eur. J. Biochem. 202 1991 367 377
P. Biely, M. Vrsanska, M. Tenkanen, and D. Kluepfel Endo-beta-1,4- xylanase families: differences in catalytic properties J. Biotechnol. 57 1997 151 166
H. van Tilbeurgh, and M. Claeyssens Detection and differentiation of cellulase components using low molecular mass fluorogenic substrates FEBS Lett. 187 1985 283 288
P. Biely, D. Kluepfel, R. Morosoli, and F. Shareck Mode of action of three endo-beta-1,4-xylanases of Streptomyces lividans Biochim. Biophys. Acta 1162 1993 246 254
H. Haas, E. Herfurth, G. Stoffler, and B. Redl Purification, characterization and partial amino acid sequences of a xylanase produced by Penicillium chrysogenum Biochim. Biophys. Acta 1117 1992 279 286
P. Biely, Z. Kratky, and M. Vrsanska Substrate-binding site of endo-1,4-beta-xylanase of the yeast Cryptococcus albidus Eur. J. Biochem. 119 1981 559 564
U. Derewenda, L. Swenson, R. Green, Y. Wei, R. Morosoli, F. Shareck, D. Kluepfel, and Z.S. Derewenda Crystal structure, at 2.6-Å resolution, of the Streptomyces lividans xylanase A, a member of the F family of beta-1,4-d-glycanases J. Biol. Chem. 269 1994 20811 20814
A. White, S.G. Withers, N.R. Gilkes, and D.R. Rose Crystal structure of the catalytic domain of the beta-1,4-glycanase cex from Cellulomonas fimi Biochemistry 33 1994 12546 12552
G.W. Harris, J.A. Jenkins, I. Connerton, N. Cummings, L. Lo Leggio, M. Scott, G.P. Hazlewood, J.I. Laurie, H.J. Gilbert, and R.W. Pickersgill Structure of the catalytic core of the family F xylanase from Pseudomonas fluorescens and identification of the xylopentaose-binding sites Structure 2 1994 1107 1116
G. Pell, E.J. Taylor, T.M. Gloster, J.P. Turkenburg, C.M. Fontes, L.M. Ferreira, T. Nagy, S.J. Clark, G.J. Davies, and H.J. Gilbert The mechanisms by which family 10 glycoside hydrolases bind decorated substrates J. Biol. Chem. 279 2004 9597 9605
G. Pell, L. Szabo, S.J. Charnock, H. Xie, T.M. Gloster, G.J. Davies, and H.J. Gilbert Structural and biochemical analysis of Cellvibrio japonicus xylanase 10C: how variation in substrate-binding cleft influences the catalytic profile of family GH-10 xylanases J. Biol. Chem. 279 2004 11777 11788
R. Dominguez, H. Souchon, S. Spinelli, Z. Dauter, K.S. Wilson, S. Chauvaux, P. Beguin, and P.M. Alzari A common protein fold and similar active site in two distinct families of beta-glycanases Nat. Struct. Biol. 2 1995 569 576
A. Mechaly, A. Teplitsky, V. Belakhov, T. Baasov, G. Shoham, and Y. Shoham Overproduction and characterization of seleno-methionine xylanase T-6 J. Biotechnol. 78 2000 83 86
A. Schmidt, A. Schlacher, W. Steiner, H. Schwab, and C. Kratky Structure of the xylanase from Penicillium simplicissimum Protein Sci. 7 1998 2081 2088
A. Canals, M.C. Vega, F.X. Gomis-Ruth, M. Diaz, R.R. Santamaria, and M. Coll Structure of xylanase Xys1delta from Streptomyces halstedii Acta Crystallogr. D: Biol. Crystallogr. 59 2003 1447 1453
Z. Fujimoto, A. Kuno, S. Kaneko, S. Yoshida, H. Kobayashi, I. Kusakabe, and H. Mizuno Crystal structure of Streptomyces olivaceoviridis E-86 beta-xylanase containing xylan-binding domain J. Mol. Biol. 300 2000 575 585
R. Natesh, P. Bhanumoorthy, P.J. Vithayathil, K. Sekar, S. Ramakumar, and M.A. Viswamitra Crystal structure at 1.8 A resolution and proposed amino acid sequence of a thermostable xylanase from Thermoascus aurantiacus J. Mol. Biol. 288 1999 999 1012
C. Ryttersgaard, L. Lo Leggio, P.M. Coutinho, B. Henrissat, and S. Larsen Aspergillus aculeatus beta-1,4-galactanase: substrate recognition and relations to other glycoside hydrolases in clan GH-A Biochemistry 41 2002 15135 15143
P. Christakopoulos, P. Katapodis, E. Kalogeris, D. Kekos, B.J. Macris, H. Stamatis, and H. Skaltsa Antimicrobial activity of acidic xylo-oligosaccharides produced by family 10 and 11 endoxylanases Int. J. Biol. Macromol. 31 2003 171 175
Ntarima, P. (2000) Les xylanases des familles 10 et 11: différentiation et caractérisation, Laboratory of Biochemistry, University of Gent, Gent, pp. 96
P. Katapodis, M. Vrsanska, D. Kekos, W. Nerinckx, P. Biely, M. Claeyssens, B.J. Macris, and P. Christakopoulos Biochemical and catalytic properties of an endoxylanase purified from the culture filtrate of Sporotrichum thermophile Carbohydr. Res. 338 2003 1881 1890
M.R. Bray, and A.J. Clarke Action pattern of xylo-oligosaccharide hydrolysis by Schizophyllum commune xylanase A Eur. J. Biochem. 204 1992 191 196
M. Vrsanska, I.V. Gorbacheva, Z. Kratky, and P. Biely Reaction pathways of substrate degradation by an acidic endo-1,4-beta-xylanase of Aspergillus niger Biochim. Biophys. Acta 704 1982 114 122
T.D. Heightman, and A. Vasella Recent insights into inhibition, structure, and mechanism of configuration-retaining glycosidase Angew. Chem. Int. Ed. 38 1999 750 770
P. Ntarima, W. Nerinckx, K. Klarskov, B. Devreese, M.K. Bhat, J. Van Beeumen, and M. Claeyssens Epoxyalkyl glycosides of d-xylose and xylo-oligosaccharides are active-site markers of xylanases from glycoside hydrolase family 11, not from family 10 Biochem. J. 347 Pt 3 2000 865 873
S. Fushinobu, K. Ito, M. Konno, T. Wakagi, and H. Matsuzawa Crystallographic and mutational analyses of an extremely acidophilic and acid-stable xylanase: biased distribution of acidic residues and importance of Asp37 for catalysis at low pH Protein Eng. 11 1998 1121 1128
U. Krengel, and B.W. Dijkstra Three-dimensional structure of Endo-1,4-beta-xylanase I from Aspergillus niger, molecular basis for its low pH optimum J. Mol. Biol. 263 1996 70 78
E. Sabini, K.S. Wilson, S. Danielsen, M. Schulein, and G.J. Davies Oligosaccharide binding to family 11 xylanases: both covalent intermediate and mutant product complexes display (2,5)B conformations at the active. centre Acta Crystallogr. D: Biol. Crystallogr. 57 2001 1344 1347
W.W. Wakarchuk, R.L. Campbell, W.L. Sung, J. Davoodi, and M. Yaguchi Mutational and crystallographic analyses of the active site residues of the Bacillus circulans xylanase Protein Sci. 3 1994 467 475
A.J. Oakley, T. Heinrich, C.A. Thompson, and M.C. Wilce Characterization of a family 11 xylanase from Bacillus subtillis B230 used for paper bleaching Acta Crystallogr. D: Biol. Crystallogr. 59 2003 627 636
J. Ay, F. Gotz, R. Borriss, and U. Heinemann Structure and function of the Bacillus hybrid enzyme GluXyn-1: native-like jellyroll fold preserved after insertion of autonomous globular domain Proc. Natl. Acad. Sci. USA 95 1998 6613 6618
N. Hakulinen, O. Turunen, J. Janis, M. Leisola, and J. Rouvinen Three-dimensional structures of thermophilic beta-1,4-xylanases from Chaetomium thermophilum and Nonomuraea flexuosa. Comparison of twelve xylanases in relation to their thermal stability Eur. J. Biochem. 270 2003 1399 1412
A.A. McCarthy, D.D. Morris, P.L. Bergquist, and E.N. Baker Structure of XynB, a highly thermostable beta-1,4-xylanase from Dictyoglomus thermophilum Rt46B.1, at 1.8 Å resolution Acta Crystallogr. D: Biol. Crystallogr. 56 Pt 11 2000 1367 1375
P.R. Kumar, S. Eswaramoorthy, P.J. Vithayathil, and M.A. Viswamitra The tertiary structure at 1.59 Å resolution and the proposed amino acid sequence of a family-11 xylanase from the thermophilic fungus Paecilomyces varioti bainier J. Mol. Biol. 295 2000 581 593
J. Wouters, J. Georis, D. Engher, J. Vandenhaute, J. Dusart, J.M. Frere, E. Depiereux, and P. Charlier Crystallographic analysis of family 11 endo-beta-1,4-xylanase Xyl1 from Streptomyces sp. S38 Acta Crystallogr. D: Biol. Crystallogr. 57 2001 1813 1819
K. Gruber, G. Klintschar, M. Hayn, A. Schlacher, W. Steiner, and C. Kratky Thermophilic xylanase from Thermomyces lanuginosus: high-resolution X-ray structure and modeling studies Biochemistry 37 1998 13475 13485
R.L. Campbell, D.R. Rose, W.W. Wakarchuk, R.J. To, Z. Sung, and M. Yagushi High resolution structures of xylanases from Bacillus circulans and Trichoderma harzianum identify a new folding pattern and implications for the atomic basis of the catalysis. Foundation for biotechnical and industrial fermentation research P. Souminen T. Reikainen Trichoderma reesei Cellulases and Other Hydrolases 1993 Espoo Finland 63 72
A. Torronen, and J. Rouvinen Structural comparison of two major endo-1,4-xylanases from Trichoderma reesei Biochemistry 34 1995 847 856
A. Torronen, A. Harkki, and J. Rouvinen Three-dimensional structure of endo-1,4-beta-xylanase II from Trichoderma reesei: two conformational states in the active site EMBO J. 13 1994 2493 2501
G.W. Harris, R.W. Pickersgill, I. Connerton, P. Debeire, J.P. Touzel, C. Breton, and S. Perez Structural basis of the properties of an industrially relevant thermophilic xylanase Proteins 29 1997 77 86
M. Penttila, P. Lehtovaara, H. Nevalainen, R. Bhikhabhai, and J. Knowles Homology between cellulase genes of Trichoderma reesei: complete nucleotide sequence of the endoglucanase I gene Gene 1692 1986 253 263
P. Biely, M. Vrsanska, and M. Claeyssens The endo-1,4-beta-glucanase I from Trichoderma reesei. Action on beta-1,4-oligomers and polymers derived from d-glucose and d-xylose Eur. J. Biochem. 200 1991 157 163
G.J. Kleywegt, J.Y. Zou, C. Divne, G.J. Davies, I. Sinning, J. Stahlberg, T. Reinikainen, M. Srisodsuk, T.T. Teeri, and T.A. Jones The crystal structure of the catalytic core domain of endoglucanase I from Trichoderma reesei at 3.6 Å resolution, and a comparison with related enzymes J. Mol. Biol. 272 1997 383 397
M.J. Gosalbes, J.A. Perez-Gonzalez, R. Gonzalez, and A. Navarro Two beta-glycanase genes are clustered in Bacillus polymyxa: molecular cloning, expression, and sequence analysis of genes encoding a xylanase and an endo-beta-(1,3)-(1,4)-glucanase J. Bacteriol. 173 1991 7705 7710
D.D. Morris, M.D. Gibbs, M. Ford, J. Thomas, and P.L. Bergquist Family 10 and 11 xylanase genes from Caldicellulosiruptor sp. strain Rt69B.1 Extremophiles 3 1999 103 111
M.D. Gibbs, R.A. Reeves, G.K. Farrington, P. Anderson, D.P. Williams, and P.L. Bergquist Multidomain and multifunctional glycosyl hydrolases from the extreme thermophile Caldicellulosiruptor isolate Tok7B.1 Curr. Microbiol. 40 2000 333 340
M.A. Schell, M. Karmirantzou, B. Snel, D. Vilanova, B. Berger, G. Pessi, M.C. Zwahlen, F. Desiere, P. Bork, M. Delley, R.D. Pridmore, and F. Arigoni The genome sequence of Bifidobacterium longum reflects its adaptation to the human gastrointestinal tract Proc. Natl. Acad. Sci. USA 99 2002 14422 14427
T. Kimura, J. Ito, A. Kawano, T. Makino, H. Kondo, S. Karita, K. Sakka, and K. Ohmiya Purification, characterization, and molecular cloning of acidophilic xylanase from Penicillium sp.40 Biosci. Biotechnol. Biochem. 64 2000 1230 1237
M. Waino, and K. Ingvorsen Production of beta-xylanase and beta-xylosidase by the extremely halophilic archaeon Halorhabdus utahensis Extremophiles 7 2003 87 93
P.L. Wejse, K. Ingvorsen, and K.K. Mortensen Purification and characterisation of two extremely halotolerant xylanases from a novel halophilic bacterium Extremophiles 7 2003 423 431
C. Vieille, and G.J. Zeikus Hyperthermophilic enzymes: sources, uses, and molecular mechanisms for thermostability Microbiol. Mol. Biol. Rev. 65 2001 1 43
R. Cannio, N. Di Prizito, M. Rossi, and A. Morana A xylan-degrading strain of Sulfolobus solfataricus: isolation and characterization of the xylanase activity Extremophiles 8 2004 117 124
A. Sunna, and P.L. Bergquist A gene encoding a novel extremely thermostable1,4-beta-xylanase isolated directly from an environmental DNA sample Extremophiles 7 2003 63 70
A. Sunna, M. Moracci, M. Rossi, and G. Antranikian Glycosyl hydrolases from hyperthermophiles Extremophiles 1 1997 2 13
A.M. Uhl, and R.M. Daniel The first description of an archaeal hemicellulase: the xylanase from Thermococcus zilligii strain AN1 Extremophiles 3 1999 263 267
V. Zverlov, K. Piotukh, O. Dakhova, G. Velikodvorskaya, and R. Borriss The multidomain xylanase A of the hyperthermophilic bacterium Thermotoga neapolitana is extremely thermoresistant Appl. Microbiol. Biotechnol. 45 1996 245 247
E. Luthi, N.B. Jasmat, and P.L. Bergquist Xylanase from the extremely thermophilic bacterium Caldocellum saccharolyticum: overexpression of the gene in Escherichia coli and characterization of the gene product Appl. Environ. Microbiol. 56 1990 2677 2683
M. Abou-Hachem, F. Olsson, and E. Nordberg Karlsson Probing the stability of the modular family 10 xylanase from Rhodothermus marinus Extremophiles 7 2003 483 491
A. Khasin, I. Alchanati, and Y. Shoham Purification and characterization of a thermostable xylanase from Bacillus stearothermophilus T-6 Appl. Environ. Microbiol. 59 1993 1725 1730
H.D. Simpson, U.R. Haufler, and R.M. Daniel An extremely thermostable xylanase from the thermophilic eubacterium Thermotoga Biochem. J. 277 Pt 2 1991 413 417
A. Schlacher, K. Holzmann, M. Hayn, W. Steiner, and H. Schwab Cloning and characterization of the gene for the thermostable xylanase XynA from Thermomyces lanuginosus J. Biotechnol. 49 1996 211 218
I. Connerton, N. Cummings, G.W. Harris, P. Debeire, and C. Breton A single domain thermophilic xylanase can bind insoluble xylan: evidence for surface aromatic clusters Biochim. Biophys. Acta 1433 1999 110 121
C.M.M.C. Andrade, N. Pereira, and G. Antranikian Extremely thermophilic microorganisms and their polymer-hydrolytic enzymes Rev. Microbiol. 30 1999 287 298
F. Niehaus, C. Bertoldo, M. Kahler, and G. Antranikian Extremophiles as a source of novel enzymes for industrial application Appl. Microbiol. Biotechnol. 51 1999 711 729
J.M. Bragger, R.M. Daniel, T. Coolbear, and H.W. Morgan Very stable enzymes from extremely thermophilic archaebacteria and eubacteria Appl. Environ. Microbiol. 31 1989 556 561
O. Turunen, M. Vuorio, F. Fenel, and M. Leisola Engineering of multiple arginines into the Ser/Thr surface of Trichoderma reesei endo-1,4-beta-xylanase II increases the thermotolerance and shifts the pH optimum towards alkaline pH Protein Eng. 15 2002 141 145
C.M. Fontes, J. Hall, B.H. Hirst, G.P. Hazlewood, and H.J. Gilbert The resistance of cellulases and xylanases to proteolytic inactivation Appl. Microbiol. Biotechnol. 43 1995 52 57
O. Turunen, K. Etuaho, F. Fenel, J. Vehmaanpera, X. Wu, J. Rouvinen, and M. Leisola A combination of weakly stabilizing mutations with a disulfide bridge in the alpha-helix region of Trichoderma reesei endo-1,4-beta-xylanase II increases the thermal stability through synergism J. Biotechnol. 88 2001 37 46
W.W. Wakarchuk, W.L. Sung, R.L. Campbell, A. Cunningham, D.C. Watson, and M. Yaguchi Thermostabilization of the Bacillus circulans xylanase by the introduction of disulfide bonds Protein Eng. 7 1994 1379 1386
P.P. Sheridan, N. Panasik, J.M. Coombs, and J.E. Brenchley Approaches for deciphering the structural basis of low temperature enzyme activity Biochim. Biophys. Acta 1543 2000 417 433
D.R. Humphry, A. George, G.W. Black, and S.P. Cummings Flavobacterium frigidarium sp. nov., an aerobic, psychrophilic, xylanolytic and laminarinolytic bacterium from Antarctica Int. J. Syst. Evol. Microbiol. 51 2001 1235 1243
G. Akila, and T.S. Chandra A novel cold-tolerant Clostridium strain PXYL1 isolated from a psychrophilic cattle manure digester that secretes thermolabile xylanase and cellulase FEMS Microbiol. Lett. 219 2003 63 67
I. Petrescu, J. Lamotte-Brasseur, J.P. Chessa, P. Ntarima, M. Claeyssens, B. Devreese, G. Marino, and C. Gerday Xylanase from the psychrophilic yeast Cryptococcus adeliae Extremophiles 4 2000 137 144
M. Turkiewiz, H. Kalinowska, M. Zielinska, and S. Bielecki Purification and characterisation of two endo-1,4-xylanases from Antarctic krill, Euphasia superba Dana Comp. Biol. Physiol. Part B 127 2000 325 335
J.R. Bradner, R.K. Sidhu, M. Gillings, and K.M. Nevalainen Hemicellulase activity of antarctic microfungi J. Appl. Microbiol. 87 1999 366 370
G.D. Inglis, A.P. Popp, L.B. Selinger, L.M. Kawchuk, D.A. Gaudet, and T.A. McAllister Production of cellulases and xylanases by low-temperature basidiomycetes Can. J. Microbiol. 46 2000 860 865
T. Collins, P. Claverie, S. D'Amico, D. Georlette, E. Gratia, A. Hoyoux, M.A. Meuwis, J. Poncin, G. Sonan, G. Feller, and C. Gerday Life in the Cold: Psychrophilic Enzymes Recent Research Developments in Proteins Vol. 1 2002 Transworld Research Network Trivandrum pp. 13-26
G. Feller, and C. Gerday Psychrophilic enzymes: hot topics in cold adaptation Nat. Rev. Microbiol. 1 2003 200 208
D. Georlette, V. Blaise, T. Collins, S. D'Amico, E. Gratia, A. Hoyoux, J.C. Marx, G. Sonan, G. Feller, and C. Gerday Some like it cold: biocatalysis at low temperatures FEMS Microbiol. Rev. 28 2004 25 42
K. Horikoshi Alkaliphiles: some applications of their products for biotechnology Microbiol. Mol. Biol. Rev. 63 1999 735 750
A. Gessesse Purification and properties of two thermostable alkaline xylanases from an alkaliphilic Bacillus sp Appl. Environ. Microbiol. 64 1998 3533 3535
V.W. Yang, Z. Zhuang, G. Elegir, and T.W. Jeffries Alkaline-active xylanase produced by an alkaliphilic Bacillus sp. isolated from kraft pulp J. Indust. Microbiol. 15 1995 434 441
K. Ratanakhanokchai, K.L. Kyu, and M. Tanticharoen Purification and properties of a xylan-binding endoxylanase from alkaliphilic Bacillus sp. strain K-1 Appl. Environ. Microbiol. 65 1999 694 697
M.C. Duarte, A.C. Pellegrino, E.P. Portugal, A.N. Ponezi, and T.T. Franco Characterization of alkaline xylanases from Bacillus pumilus Braz. J. Microbiol. 31 2000 90 94
P. Christakopoulos, W. Nerinckx, D. Kekos, B. Macris, and M. Claeyssens Purification and characterization of two low molecular mass alkaline xylanases from Fusarium oxysporum F3 J. Biotechnol. 51 1996 181 189
S. Nakamura, K. Wakabayashi, R. Nakai, R. Aono, and K. Horikoshi Purification and some properties of an alkaline xylanase from alkaliphilic Bacillus sp. strain 41M-1 Appl. Environ. Microbiol. 59 1993 2311 2316
K. Horikoshi, and Y. Atsukawa Xylanase produced by alkalophilic Bacillus no C-59-2 Agric. Biol. Chem. 37 1973 2097 2103
A. Torronen, R.L. Mach, R. Messner, R. Gonzalez, N. Kalkkinen, A. Harkki, and C.P. Kubicek The two major xylanases from Trichoderma reesei: characterization of both enzymes and genes Biotechnology (NY) 10 1992 1461 1465
K. Inagaki, K. Nakahira, K. Mukai, T. Tamura, and H. Tanaka Gene cloning and characterization of an acidic xylanase from Acidobacterium capsulatum Biosci. Biotechnol. Biochem. 62 1998 1061 1067
H. Iefuji, M. Chino, M. Kato, and Y. Iimura Acid xylanase from yeast Cryptococcus sp. S-2: purification, characterization, cloning, and sequencing Biosci. Biotechnol. Biochem. 60 1996 1331 1338
K. Ito, K. Iwashita, and K. Iwano Cloning and sequencing of the xynC gene encoding acid xylanase of Aspergillus kawachii Biosci. Biotechnol. Biochem. 56 1992 1338 1340
M.D. Joshi, G. Sidhu, J.E. Nielsen, G.D. Brayer, S.G. Withers, and L.P. McIntosh Dissecting the electrostatic interactions and pH-dependent activity of a family 11 glycosidase Biochemistry 40 2001 10115 10139
A. Sapag, J. Wouters, C. Lambert, P. de Ioannes, J. Eyzaguirre, and E. Depiereux The endoxylanases from family 11: computer analysis of protein sequences reveals important structural and phylogenetic relationships J. Biotechnol. 95 2002 109 131
M.D. Joshi, G. Sidhu, I. Pot, G.D. Brayer, S.G. Withers, and L.P. McIntosh Hydrogen bonding and catalysis: a novel explanation for how a single amino acid substitution can change the pH optimum of a glycosidase J. Mol. Biol. 299 2000 255 279
Y.L. Chen, T.Y. Tang, and K.J. Cheng Directed evolution to produce an alkalophilic variant from a Neocallimastix patriciarum xylanase Can. J. Microbiol. 47 2001 1088 1094
T. Godfrey, and S. West Industrial Enzymology Second ed. 1996 Macmillan Press Ltd. London
T. Godfrey The enzymes market for grain processing C.M. Courtin W.S. Veraverbeke J.A. Delcour Recent Advances in Enzymes in Grain Processing 2003 Kat. Univ. Leuven Leuven 401 406
M.K. Bhat Cellulases and related enzymes in biotechnology Biotech. Adv. 18 2000 355 383
D.F. Tikhomirov, A.P. Sinitsyn, I.N. Zorov, and C. Williams Non-starch polysaccharide hydrolysing microbial enzymes in grain processing C.M. Courtin W.S. Veraverbeke J.A. Delcour Recent Advances in Enzymes in Grain Processing 2003 Kat. Univ. Leuven Leuven 413 418
Kamal Kumar, B., Balakrishnan, H. and Rele, M.V. (2004) Compatibility of alkaline xylanases from an alkaliphilic Bacillus NCL (87-6-10) with commercial detergents and proteases. J. Ind. Microbiol. Biotechnol. Epub ahead of print
P. Katapodis, M. Vardakou, E. Kalogeris, D. Kekos, B.J. Macris, and P. Christakopoulos Enzymic production of a feruloylated oligosaccharide with antioxidant activity from wheat flour arabinoxylan Eur. J. Nutr. 42 2003 55 60
S. Matsumura, K. Sakiyama, and K. Toshima Preparation of octyl-B-d-xylobioside and xyloside by xylanase catalyzed direct transglycosylation reaction of xylan and octanol Biotechnol. Lett. 21 1999 17 22
Imanaka, T. and Sakurai, S. (1992) Method of washing super precision devices, semiconductors, with enzymes. United States Patent 5,078,802
L. Viikari Xylanases in bleaching: from an idea to the industry FEMS Microbiol. Rev. 13 1994 335 350
J.R. Mielenz Ethanol production from biomass: technology and commercialization status Curr. Opin. Microbiol. 4 2001 324 329
B.C. Saha Hemicellulose bioconversion J. Ind. Microbiol. Biotechnol. 30 2003 279 291
L.V. Campenhout, I. Somers, S. Van de Craen, and C. Adams In vitro test to evaluate protein degradation by feed enzymes C.M. Courtin W.S. Veraverbeke J.A. Delcour Recent Advances in Enzymes in Grain Processing 2003 Kat. Univ. Leuven. Leuven 387 390
Y.M. Galante, A. De Conti, and R. Monteverdi Application of Trichoderma enzymes in food and feed industries G.E. Harman C.P. Kubicek Trichoderma and Gliocladium - Enzymes, Biological Control and Commercial Applications 1998 Taylor and Francis London 327 342
K.K.Y. Wong, and J.N. Saddler Applications of hemicellulases in the food, feed and pulp and paper industries M.P. Coughlan G.P. Hazlewood Hemicelluloses and Hemicellulases 1993 Portland Press London 127 143
J. Maat, M. Roza, J. Verbakel, H. Stam, M.J.S. daSilra, M.R. Egmond, M.L.D. Hagemans, R.F.M. van Garcom, J.G.M. Hessing, C. van Derhondel, and C. van Rotterdam Xylanases and their application in baking J. Visser G. Beldman M.A.K. van Someren A.G.J. Voragen Xylan and Xylanases 1992 Elsevier Amsterdam 349 360
N. Mathlouthi, J.P. Lalles, P. Lepercq, C. Juste, and M. Larbier Xylanase and beta-glucanase supplementation improve conjugated bile acid fraction in intestinal contents and increase villus size of small intestine wall in broiler chickens fed a rye-based diet J. Anim. Sci. 80 2002 2773 2779
N. Mathlouthi, M.A. Mohamed, and M. Larbier Effect of enzyme preparation containing xylanase and beta-glucanase on performance of laying hens fed wheat/barley- or maize/soybean meal-based diets Br. Poult. Sci. 44 2003 60 66
N. Mathlouthi, H. Juin, and M. Larbier Effect of xylanase and beta-glucanase supplementation of wheat- or wheat- and barley-based diets on the performance of male turkeys Br. Poult. Sci. 44 2003 291 298
H. Pala, M. Mota, and F.M. Gama Enzymatic versus chemical deinking of non-impact ink printed paper J. Biotechnol. 108 2004 79 89
S.A. Frederix, C.M. Courtin, and J.A. Delcour Impact of endoxylanases with different substrate selectivity on gluten-starch separation C.M. Courtin W.S. Veraverbeke J.A. Delcour Recent Advances in Enzymes in Grain Processing 2003 Kat. Univ. Leuven Leuven 247 254
H.S.S. Sharma Enzymatic degradation of residual non-cellulosic polysaccharides present on dew-retted flax fibers Appl. Microbiol. Biotechnol. 26 1987 2714 2723
N. Guex, and M.C. Peitsch SWISS-MODEL and the Swiss-PdbViewer: an environment for comparative protein modeling Electrophoresis 18 1997 2714 2723
J. Georis, F. Giannotta, J. Lamotte-Brasseur, B. Devreese, J. Van Beeumen, B. Granier, and J.M. Frere Sequence, overproduction and purification of the family 11 endo-beta-1,4-xylanase encoded by the xyl1 gene of Streptomyces sp. S38 Gene 237 1999 123 133
P. Beguin, P. Cornet, and J.P. Aubert Sequence of a cellulase gene of the thermophilic bacterium Clostridium thermocellum J. Bacteriol. 162 1985 102 105
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.