Modélisation environnementale; couvert forestier; hydrologie; relation plante eau; système racinaire; transpiration; environmental modelling; forest cover; hydrology; plant water relations; root systems
Abstract :
[fr] De nombreux modèles de simulation hydrologique existent, dont un certain nombre applicables en milieux forestiers. Cette synthèse bibliographique a pour objectif de comparer dix d’entre eux (BILJOU, EPIC, BROOK90, SWAT, RHESSys, MIKE SHE, SHETRAN, WaSiM ETH, DHSVM et Hydrus) afin d’éclairer le choix des utilisateurs potentiels. La comparaison est axée sur différents aspects de l’environnement forestier : l’interception, l’évapotranspiration, le prélèvement racinaire, l’effet du sous-étage, la croissance des arbres, ainsi que la validation de ces modèles. L’interception, lorsqu’elle est calculée, est traitée de manière similaire par neuf modèles sur les dix sélectionnés. Les modèles utilisent diverses méthodes de calcul de l’ETP et la plupart font intervenir la densité racinaire pour le calcul du prélèvement d’eau dans le sol. Le sous étage et la croissance des arbres sont rarement pris en compte. [en] There are many hydrological models, some of which can be used for forested environments. This review aims to compare ten of them (BILJOU, EPIC, BROOK90, SWAT, RHESSys, MIKE SHE, SHETRAN, WaSiM ETH, DHSVM et Hydrus) to guide the choice. The compared fluxes are the interception, the transpiration and the root water uptake, the root distribution, the undercover effect, the tree growth and the model validation. The review underlines that each model deals with the forest fluxes in different ways. Most of the time, interception is similarly dealt by the models and the root distribution is used in the process of root water uptake. Understory and growth are seldom considered.
Disciplines :
Environmental sciences & ecology
Author, co-author :
Deraedt, Deborah ; Université de Liège - ULiège > Sciences et technologie de l'environnement > Systèmes Sol-Eau
Colinet, Gilles ; Université de Liège - ULiège > Sciences et technologie de l'environnement > Systèmes Sol-Eau
Claessens, Hugues ; Université de Liège - ULiège > Forêts, Nature et Paysage > Gestion des ressources forestières et des milieux naturels
Degré, Aurore ; Université de Liège - ULiège > Sciences et technologie de l'environnement > Systèmes Sol-Eau
Language :
French
Title :
Représentation du couvert forestier dans la modélisation hydrologique : Comparaison de dix modèles
Alternative titles :
[en] Forest cover representation in hydrological modelling : Comparison of ten models
Publication date :
2014
Journal title :
Biotechnologie, Agronomie, Société et Environnement
ISSN :
1370-6233
eISSN :
1780-4507
Publisher :
Presses Agronomiques de Gembloux, Gembloux, Belgium
Aussenac G. & Granier A., 1979. Étude bioclimatique d'une futaie feuillue de l'Est de la France: II. Étude de l'humidité du sol et de l'évapotranspiration réelle. Ann. Sci. For., 36(4), 265-280.
Band L.E., Patterson P., Nemani R. & Running S.W., 1993. Forest ecosystem processes at the watershed scale: incorporating hillslope hydrology. Agric. For. Meteorol., 63(1-2), 93-126.
Bathurst J.C. et al., 2004. Validation of catchment models for predicting land-use and climate change impacts: 3. Blind validation for internal and outlet responses. J. Hydrol., 287(1-4), 74-94.
Beckers É. & Degré A., 2011. Revue bibliographique: la prise en compte des transferts horizontaux dans les modèles hydrologiques. Biotechnol. Agron. Soc. Environ., 15(1), 143-151.
Birkinshaw S.J., 2011. SHETRAN Web Site. Newcastle upon Tyne, UK: School of Civil Engineering and Geosciences, Newcastle University, http://research.ncl.ac.uk/shetran/index.htm, (28/03/12).
Birkinshaw S.J, Bathurst J.C., Iroumé A. & Palacios H., 2010. The effect of forest cover on peak flow and sediment discharge - An integrated field and modelling study in central-southern Chile. Hydrol. Processes, 25(8), 1284-1297.
Bormann H., Breuer L., Gräff T. & Huisman J.A., 2007. Analysing the effects of soil properties changes associated with land use changes on the simulated water balance: a comparison of three hydrological catchment models for scenario analysis. Ecol. Model., 209(1), 29-40.
Brolsma R.J., van Beek L.P.H. & Bierkens M.F.P., 2010. Vegetation competition model for water and light limitation. II: Spatial dynamics of groundwater and vegetation. Ecol. Model., 221(10), 1367-1377.
Cao W., Bowden W.B., Davie T. & Fenemor A., 2006. Multi-variable and multi-site calibration and validation of SWAT in a large mountainous catchment with high spatial variability. Hydrol. Processes, 20(5), 1057-1073.
Combalicer E.A., Cruz R.V.O., Lee S. & Im S., 2010. Assessing climate change impacts on water balance in the Mount Makiling forest, Philippines. J. Earth Syst. Sci., 119(3), 265-283.
Dai Z. et al., 2010. Bi-criteria evaluation of the MIKE SHE model for a forested watershed on the South Carolina coastal plain. Hydrol. Earth Syst. Sci., 14(6), 1033-1046.
DHI Software, 2007. MIKE SHE User manual: volumes 1 & 2: User guide & User manual. Hørsholm, Denmark: DHI.
Dun S. et al., 2009. Adapting the Water Erosion Prediction Project (WEPP) model for forest applications. J. Hydrol., 366(1-4), 46-54.
Ehinger G., Maurice D. & Heydt N., 2009. Modèle de bilan hydrique forestier. Champenoux, France: INRA, UMR Écologie et Écophysiologie Forestières, https://appgeodb.nancy.inra.fr/biljou/index.php?p=accueil, (16/01/13).
Elliott A.H., Oehler F., Schmidt J. & Ekanayake J.C., 2012. Sediment modelling with fine temporal and spatial resolution for hilly catchment. Hydrol. Processes, 26(24), 3645-3660.
Federer C.A., 2002. BROOK 90: a simulation model for evaporation, soil water, and streamflow, http://www.ecoshift.net/brook/brook90.htm, (16/1/2013).
Federer C.A., Vörösmarty C. & Fekete B., 2003. Sensitivity of annual evaporation to soil and root properties in two models of contrasting complexity. J. Hydrometeorol., 4(6), 1276-1290.
Granier A., Badeau V. & Bréda N., 1995. Modélisation du bilan hydrique des peuplements forestiers. Rev. For. Fr., XLVII, 59-68.
Granier A., Bréda N., Biron P. & Villette S., 1999. A lumped water balance model to evaluate duration and intensity of drought constraints in forest stands. Ecol. Model., 116(2-3), 269-283.
Hamon W.R., 1961. Estimating potential evapotranspiration. J. Hydraul. Div. Proc. Am. Soc. Civ. Eng., 87, 107-120.
Hargreaves G.L., Hargreaves G.H. & Riley J.P., 1985. Agricultural benefits for Senegal river basin. J. Irrig. Drain. Eng., 111(2), 113-124.
Haude W., 1955. Zur bestimmung der verdunstung auf möglichst einfache weise. Mitt. Dtsch. Wetterdienstes, 2(11), 1-24.
Hollander H.M. et al., 2009. Comparative predictions of discharge from an artificial catchment (Chicken Creek) using sparse data. Hydrol. Earth Syst. Sci., 13(11), 2069-2094.
Holzel H., Rössler O. & Diekkrüger B., 2011. Grope in the Dark - Hydrological modelling of the artificial Chicken Creek catchment without validation possibilities. Phys. Chem. Earth, 36(1-4), 113-122.
Jasper K., Calanca P. & Fuhrer J., 2006. Changes in summertime soil water patterns in complex terrain due to climatic change. J. Hydrol., 327(3-4), 550-563.
Monteith J.L., 1965. Evaporation and the environment. In: Proceedings of the 19th Symposium of the Society for Experimental Biology, 8-12 September 1964, Swansea, UK. Cambridge, UK: University Press, 205-234.
Nasr A. et al., 2007. A comparison of SWAT, HSPF and SHETRAN/GOPC for modelling phosphorus export from three catchments in Ireland. Water Res., 41(5), 1065-1073.
Natkhin M. et al., 2012. Differentiating between climate effects and forest growth dynamics effects on decreasing groundwater recharge in a lowland region in Northeast Germany. J. Hydrol., 448, 245-254.
Neitsch S.L., Arnold J.G., Kiniry J.R. & Williams J.R., 2011. Soil and water assessment tool: theoretical documentation, version 2009. Technical report No 406. College Station, TX, USA: Texas Water Resources Institute.
Newcastle University, sd(a). SHETRAN Water Flow Component, Equations and Algorithms. Newcastle upon Tyne, UK: School of Civil Engineering and Geosciences, Newcastle University, http://research.ncl.ac.uk/shetran/water%20flow%20equations.pdf, (12/03/12).
Newcastle University, sd(b). SHETRAN Version 4, data requirements, data processing, and parameter values. Newcastle upon Tyne, UK: School of Civil Engineering and Geosciences, Newcastle University, http://research.ncl.ac.uk/shetran/SHETRAN%20V4%20Data%20Requirements.pdf, (16/03/12).
Ooba M., Wang Q., Murakami S. & Kohata K., 2010. Biogeochemical model (BGC-ES) and its basin-level application for evaluating ecosystem services under forest management practices. Ecol. Model., 221(16), 1979-1994.
Penman H.L., 1948. Natural evaporation from open water, bare soil and grass. Proc. R. Soc. London, Ser. A, 193(1032), 120-145.
Priestley C.H.B & Taylor R.J., 1972. On the assessment of surface heat flux and evaporation using large scale parameters. Mon. Weather Rev., 100(2), 81-92.
Safeeq M. & Fares A., 2012. Hydrologic effect of groundwater development in a small mountainous tropical watershed. J. Hydrol., 428-429, 51-67.
Sahoo G.B., Ray C. & De Carlo E.H., 2006. Calibration and validation of a physically distributed hydrological model, MIKE SHE, to predict streamflow at high frequency in a flashy mountainous Hawaii stream. J. Hydrol., 327(1-2), 94-109.
Schulla J., 2012. Model Description WaSiM (Water balance Simulation Model), completely revised version 2012. Zürich, Switzerland: Hydrology Software Consulting.
Shuttleworth W.J. & Wallace J.S., 1985. Evaporation from sparse crops - an energy combination theory. Q. J. R. Meteorolog. Soc., 11(469), 839-855.
Šimůnek J., van Genuchten M.T. & Šejna M., 2011. The HYDRUS Software package for simulating the two- and three-dimensional movement of water, heat and multiple solutes in variably-saturated media: technical manual, version 2.0. Prague, Czech Republic: PC Progress.
Singh V.P., 1995. Computer models of watershed hydrology. Highlands Ranch, CO, USA: Water Ressources Publications.
Tague C.L. & Band L.E., 2004. Regional Hydro-Ecologic Simulation System - An object-oriented approach to spatially distributed modeling of carbon, water, and nutrient cycling. Earth Interact., 8(19), 1-42.
Tatarinov F.A. & Cienciala E., 2009. Long-term simulation of the effect of climate changes on the growth of main Central-European forest tree species. Ecol. Model., 220(21), 3081-3088.
van der Heijden G. et al., 2013. Tracing and modeling preferential flow in a forest soil - Potential impact on nutrient leaching. Geoderma, 195-196, 12-22.
Wang X.C., Li J., Tahir M.N. & De Hao M., 2011. Validation of the EPIC model using a long-term experimental data on the semi-arid Loess Plateau of China. Math. Comput. Modell., 54(3-4), 976-986.
Wendling U., 1975. Zur messung und schätzung der potentielle verdunstung. Ztg. Meteorol., 25(2), 103-111.
Whitaker A., Alila Y., Beckers J. & Toews D., 2003. Application of the distributed hydrology soil vegetation model to Redfish Creek, British Columbia: model evaluation using internal catchment data. Hydrol. Processes, 17(2), 199-224.
Wigmosta M.S., Nijssen B. & Storck P., 2002. The distributed hydrology soil vegetation model. In: Singh V.P. & Frevert D.K., eds. Mathematical models of small watershed hydrology and applications. Highlands Ranch, CO, USA: Water Resources Publications, 7-42.
Williams J.R., 1995. The EPIC model. In: Singh V.P., ed. Computer models of watershed hydrology. Highlands Ranch, CO, USA: Water Ressources Publications, 909-1000.
Zierl B., Bugmann H. & Tague C.L., 2007. Water and carbon fluxes of European ecosystems: an evaluation of the ecohydrological model RHESSys. Hydrol. Processes, 21(24), 3328-3339.