Abstract :
[en] PSII antenna size heterogeneity has been intensively studied in the past. Based on DCMU fluorescence rise kinetics, multiple types of photosystems with different properties were described. However, due to the complexity of fluorescence signal analysis, multiple questions remain unanswered. The number of different types of PSII is still debated as well as their degree of connectivity. In Chlamydomonas reinhardtii we found that PSIIα possesses a high degree of connectivity and an antenna 2-3 times larger than PSIIβ, as described previously. We also found some connectivity for PSIIβ in contrast with the majority of previous studies. This is in agreement with biochemical studies which describe PSII mega-, super- and core- complexes in Chlamydomonas. In these studies, the smallest unit of PSII in vivo would be a dimer of two core complexes hence allowing connectivity. We discuss the possible relationships between PSIIα and PSIIβ and the PSII mega-, super- and core- complexes. We also showed that strain and medium dependent variations in the half-time of the fluorescence rise can be explained by variations in the proportions of PSIIα and PSIIβ. When analyzing the state transition process in vivo, we found that this process induces an inter-conversion of PSIIα and PSIIβ. During a transition from state 2 to state 1, DCMU fluorescence rise kinetics are satisfactorily fitted by considering two PSII populations with constant kinetic parameters. We discuss our findings about PSII heterogeneity during state transitions in relation with recent results on the remodeling of the pigment-protein PSII architecture during this process.
Scopus citations®
without self-citations
16