Article (Scientific journals)
Herschel imaging and spectroscopy of the nebula around the luminous blue variable star WRAY 15-751
Vamvatira-Nakou, Chloi; Hutsemekers, Damien; Royer, P. et al.
2013In Astronomy and Astrophysics, 557, p. 20, pp. 1-17
Peer Reviewed verified by ORBi
 

Files


Full Text
aa21853-13.pdf
Publisher postprint (1.33 MB)
Request a copy

All documents in ORBi are protected by a user license.

Send to



Details



Keywords :
circumstellar matter; stars: massive; stars: mass-loss; stars: variables: S Doradus; stars: individual: WRAY 15-751
Abstract :
[en] We have obtained far-infrared Herschel-PACS imaging and spectroscopic observations of the nebular environment of the luminous blue variable (LBV) WRAY 15-751. The far-infrared images clearly show that the main, dusty nebula is a shell of radius 0.5 pc and width 0.35 pc extending outside the Hα nebula. Furthermore, these images reveal a second, bigger and fainter dust nebula that is observed for the first time. Both nebulae lie in an empty cavity, very likely the remnant of the O-star wind bubble formed when the star was on the main sequence. The kinematic ages of the nebulae are calculated to be about 2 × 10^4 and 8 × 10^4 years, and we estimated that each nebula contains ~0.05 Msun of dust. Modeling of the inner nebula indicates a Fe-rich dust. The far-infrared spectrum of the main nebula revealed forbidden emission lines coming from ionized and neutral gas. Our study shows that the main nebula consists of a shell of ionized gas surrounded by a thin photodissociation region illuminated by an “average” early-B star. We derive the abundance ratios N/O = 1.0 ± 0.4 and C/O = 0.4 ± 0.2, which indicate a mild N/O enrichment. From both the ionized and neutral gas components we estimate that the inner shell contains 1.7 ± 0.6 Msun of gas. Assuming a similar dust-to-gas ratio for the outer nebula, the total mass ejected by WRAY 15-751 amounts to 4± 2 Msun. The measured abundances, masses and kinematic ages of the nebulae were used to constrain the evolution of the star and the epoch at which the nebulae were ejected. Our results point to an ejection of the nebulae during the red super-giant (RSG) evolutionary phase of an ~40 Msun star. The multiple shells around the star suggest that the mass-loss was not a continuous ejection but rather a series of episodes of extreme mass-loss. Our measurements are compatible with the recent evolutionary tracks computed for an ~40 Msun star with little rotation. They support the O–BSG–RSG–YSG–LBV filiation and the idea that high-luminosity and low-luminosity LBVs follow different evolutionary paths.
Disciplines :
Space science, astronomy & astrophysics
Author, co-author :
Vamvatira-Nakou, Chloi ;  Université de Liège - ULiège > Département d'astrophys., géophysique et océanographie (AGO) > Astroph. extragalactique et observations spatiales (AEOS)
Hutsemekers, Damien ;  Université de Liège - ULiège > Département d'astrophys., géophysique et océanographie (AGO) > Astroph. extragalactique et observations spatiales (AEOS)
Royer, P.
Nazé, Yaël  ;  Université de Liège - ULiège > GAPHE : Astrophysique observationnelle (sol et espace)
Magain, Pierre  ;  Université de Liège - ULiège > Département d'astrophys., géophysique et océanographie (AGO) > Origines Cosmologiques et Astrophysiques (OrCa)
Exter, K.
Waelkens, C.
Groenewegen, M.A.T.
Language :
English
Title :
Herschel imaging and spectroscopy of the nebula around the luminous blue variable star WRAY 15-751
Publication date :
14 August 2013
Journal title :
Astronomy and Astrophysics
ISSN :
0004-6361
eISSN :
1432-0746
Publisher :
EDP Sciences, Les Ulis, France
Volume :
557
Pages :
A20, pp. 1-17
Peer reviewed :
Peer Reviewed verified by ORBi
Available on ORBi :
since 22 August 2013

Statistics


Number of views
90 (26 by ULiège)
Number of downloads
3 (3 by ULiège)

Scopus citations®
 
17
Scopus citations®
without self-citations
11
OpenCitations
 
16

Bibliography


Similar publications



Contact ORBi