Paper published in a book (Scientific congresses and symposiums)
Lazy planning under uncertainty by optimizing decisions on an ensemble of incomplete disturbance trees
Defourny, Boris; Ernst, Damien; Wehenkel, Louis
2008In Defourny, Boris; Ernst, Damien; Wehenkel, Louis (Eds.) Recent Advances in Reinforcement Learning
Peer reviewed
 

Files


Full Text
disturbanceTree.pdf
Publisher postprint (177.63 kB)
Download

All documents in ORBi are protected by a user license.

Send to



Details



Keywords :
stochastic dynamic programming; ensemble methods
Abstract :
[en] This paper addresses the problem of solving discrete-time optimal sequential decision making problems having a disturbance space W composed of a finite number of elements. In this context, the problem of finding from an initial state x0 an optimal decision strategy can be stated as an optimization problem which aims at finding an optimal combination of decisions attached to the nodes of a disturbance tree modeling all possible sequences of disturbances w0, w1, . . ., w(T−1) in W^T over the optimization horizon T. A significant drawback of this approach is that the resulting optimization problem has a search space which is the Cartesian product of O(|W|^(T−1)) decision spaces U, which makes the approach computationally impractical as soon as the optimization horizon grows, even if W has just a handful of elements. To circumvent this difficulty, we propose to exploit an ensemble of randomly generated incomplete disturbance trees of controlled complexity, to solve their induced optimization problems in parallel, and to combine their predictions at time t = 0 to obtain a (near-)optimal first-stage decision. Because this approach postpones the determination of the decisions for subsequent stages until additional information about the realization of the uncertain process becomes available, we call it lazy. Simulations carried out on a robot corridor navigation problem show that even for small incomplete trees, this approach can lead to near-optimal decisions.
Disciplines :
Computer science
Author, co-author :
Defourny, Boris ;  Université de Liège - ULiège > Dép. d'électric., électron. et informat. (Inst.Montefiore) > Systèmes et modélisation
Ernst, Damien  ;  Université de Liège - ULiège > Dép. d'électric., électron. et informat. (Inst.Montefiore) > Systèmes et modélisation
Wehenkel, Louis  ;  Université de Liège - ULiège > Dép. d'électric., électron. et informat. (Inst.Montefiore) > Systèmes et modélisation
Language :
English
Title :
Lazy planning under uncertainty by optimizing decisions on an ensemble of incomplete disturbance trees
Publication date :
2008
Event name :
8th European Workshop on Reinforcement Learning (EWRL'08)
Event place :
Villeneuve d'Ascq, France
Event date :
30 June - 3 July
Audience :
International
Main work title :
Recent Advances in Reinforcement Learning
Author, co-author :
Defourny, Boris ;  Université de Liège - ULiège > Département d'électricité, électronique et informatique (Institut Montefiore)
Ernst, Damien  ;  Université de Liège - ULiège > Montefiore Institute of Electrical Engineering and Computer Science
Wehenkel, Louis  ;  Université de Liège - ULiège > Montefiore Institute of Electrical Engineering and Computer Science
ISBN/EAN :
978-3-540-89721-7
Collection name :
Lecture Notes in Artificial Intelligence, Vol. 5323
Pages :
1-14
Peer reviewed :
Peer reviewed
Available on ORBi :
since 27 June 2009

Statistics


Number of views
100 (4 by ULiège)
Number of downloads
174 (3 by ULiège)

Scopus citations®
 
5
Scopus citations®
without self-citations
3
OpenCitations
 
2
OpenAlex citations
 
6

Bibliography


Similar publications



Contact ORBi