[en] Physically based projections of the Greenland ice sheet contribution to future sea-level change are subject to uncertainties of the atmospheric and oceanic climatic forcing and to the formulations within the ice flow model itself. Here a higher-order, three-dimensional thermomechanical ice flow model is used, initialized to the present-day geometry. The forcing comes from a high-resolution regional climate model and from a flowline model applied to four individual marine-terminated glaciers, and results are subsequently extended to the entire ice sheet. The experiments span the next 200 years and consider climate scenario SRES A1B. The surface mass-balance (SMB) scheme is taken either from a regional climate model or from a positive-degree-day (PDD) model using temperature and precipitation anomalies from the underlying climate models. Our model results show that outlet glacier dynamics only account for 6–18% of the sea-level contribution after 200 years, confirming earlier findings that stress the dominant effect of SMB changes. Furthermore, interaction between SMB and ice discharge limits the importance of outlet glacier dynamics with increasing atmospheric forcing. Forcing from the regional climate model produces a 14–31% higher sea-level contribution compared to a PDD
model run with the same parameters as for IPCC AR4.
Disciplines :
Earth sciences & physical geography
Author, co-author :
Goelzer, H.
Huybrechts, P.
Furst, Johannes Jakob
Nick, F.
Andersen, M.
Eswards, T.
Fettweis, Xavier ; Université de Liège - ULiège > Département de géographie > Topoclimatologie
Payne, A.
Shannon, S.
Language :
English
Title :
Sensitivity of Greenland ice sheet projections to model formulations
Publication date :
July 2013
Journal title :
Journal of Glaciology
ISSN :
0022-1430
eISSN :
1727-5652
Publisher :
International Glaciological Society, Cambridge, United Kingdom
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
Amundson JM, Fahnestock M, Truffer M, Brown J, Lüthi MP and Motyka RJ (2010) Ice mélange dynamics and implications for terminus stability, Jakobshavn Isbræ, Greenland. J. Geophys. Res., 115(F1), F01005 (doi: 10.1029/2009JF001405)
Arthern RJ and Gudmundsson GH (2010) Initialization of ice-sheet forecasts viewed as an inverse Robin problem. J. Glaciol., 56(197), 527-533 (doi: 10.3189/002214310792447699)
Bamber JL and 10 0thers (2013) A new bed elevation dataset for Greenland. Cryosphere, 7(2), 499-510 (doi: 10.5194/tc-7-499-2013)
Bougamont M and 7 others (2007) Impact of model physics on estimating the surface mass balance of the Greenland ice sheet. Geophys. Res. Lett., 34(17), L17501 (doi: 10.1029/2007GL030700)
Edwards TL and 12 others (2013a) Effect of uncertainty in surface mass balance-elevation feedback on projections of the future sea level contribution of the Greenland ice sheet - Part 1: parameterisation. Cryos. Discuss., 7(1), 635-674 (doi: 10.5194/tcd-7-635-2013)
Edwards TL and 12 others (2013b) Effect of uncertainty in surface mass balance elevation feedback on projections of the future sea level contribution of the Greenland ice sheet - Part 2: projections. Cryos. Discuss., 7(1), 675-708 (doi: 10.5194/tcd-7-675-2013)
Ettema J and 6 others (2009) Higher surface mass balance of the Greenland ice sheet revealed by high-resolution climate modelling. Geophys. Res. Lett., 36(12), L12501 (doi: 10.1029/2009GL038110)
Fahnestock M, Abdalati W, Joughin I, Brozena J and Gogineni P (2001) High geothermal heat flow, basal melt, and the origin of rapid ice flow in central Greenland. Science, 294(5550), 2338-2342 (doi: 10.1126/science.1065370)
Fettweis X (2007) Reconstruction of the 1979-2006 Greenland ice sheet surface mass balance using the regional climate model MAR. Cryosphere, 1(1), 21-40 (doi: 10.5194/tc-1-21-2007)
Fettweis X, Tedesco M, Van den Broeke M and Ettema J (2011) Melting trends over the Greenland ice sheet (1958-2009) from spaceborne microwave data and regional climate models. Cryosphere, 5(2), 359-375 (doi: 10.5194/tc-5-359-2011)
Fettweis X and 6 others (2013) Estimating the Greenland ice sheet surface mass balance contribution to future sea level rise using the regional atmospheric climate model MAR. Cryosphere, 7(2), 469-489 (doi: 10.5194/tc-7-469-2013)
Franco B, Fettweis X and Erpicum M (2013) Future projections of the Greenland ice sheet energy balance driving the surface melt. Cryosphere, 7(1), 1-18 (doi: 10.5194/tc-7-1-2013)
Fürst JJ, Rybak O, Goelzer H, De Smedt B, de Groen P and Huybrechts P (2011) Improved convergence and stability properties in a three-dimensional higher-order ice sheet model. Geosci. Model Dev., 4(4), 1133-1149 (doi: 10.5194/gmd-4-1133-2011)
Fürst JJ, Goelzer H and Huybrechts P (2013) Effect of higher-order stress gradients on the centennial mass evolution of the Greenland ice sheet. Cryosphere, 7(1), 183-199 (doi: 10.5194/tc-7-183-2013)
Gillet-Chaulet F and 8 others (2012) Greenland Ice Sheet contribution to sea-level rise from a new-generation icesheet model. Cryosphere, 6(4), 1561-1576 (doi: 10.5194/tc-6-1561-2012)
Graversen RG, Drijfhout S, Hazeleger W, Van de Wal R, Bintanja R and Helsen M (2011) Greenland's contribution to global sealevel rise by the end of the 21st century. Climate Dyn., 37(7-8), 1427-1442 (doi: 10.1007/s00382-010- 0918-8)
Gregory J and Huybrechts P (2006) Ice-sheet contributions to future sea-level change. Philos. Trans. R. Soc. London, 364(1844), 1709-1731 (10.1098/rsta.2006.1796)
Greve R, Saito F and Abe-Ouchi A (2011) Initial results of the SeaRISE numerical experiments with the models SICOPOLIS and IcIES for the Greenland ice sheet. Ann. Glaciol., 52(58), 23-30 (doi: 10.3189/172756411797252068)
Hanna E, Huybrechts P, Janssens I, Cappelen J, Steffen K and Stephens A (2005) Runoff and mass balance of the Greenland ice sheet: 1958-2003. J. Geophys. Res., 110(D13), D13108 (doi: 10.1029/2004JD005641)
Hanna e and 12 others (2011) Greenland Ice Sheet surface mass balance 1870 to 2010 based on Twentieth Century Reanalysis, and links with global climate forcing. J. Geophys. Res., 116(D24), D24121 (doi: 10.1029/2011JD016387)
Holland DM, Thomas RH, de Young B, Ribergaard MH and Lyberth B (2008) Acceleration of Jakobshavn Isbræ triggered by warm subsurface ocean waters. Nature Geosci., 1(10), 659-664 (doi: 10.1038/ngeo316)
Huybrechts P (2002) Sea-level changes at the LGM from icedynamic reconstructions of the Greenland and Antarctic ice sheets during the glacial cycles. Quat. Sci. Rev., 21(1-3), 203-231 (doi: 10.1016/S0277-3791 (01) 00082-8)
Huybrechts P and de Wolde J (1999) The dynamic response of the Greenland and Antarctic ice sheets to multiple-century climatic warming. J. Climate, 12(8), 2169-2188 (doi: 10.1175/1520-0442 (1999) 012<2169:TDROTG>2.0. CO;2)
Huybrechts P, Gregory J, Janssens I and Wild M (2004) Modelling Antarctic and Greenland volume changes during the 20th and 21st centuries forced by GCM time slice integrations. Global Planet. Change, 42(1-4), 83-105 (doi: 10.1016/j.gloplacha.2003.11.011)
Huybrechts P and 6 others (2011) Response of the Greenland and Antarctic ice sheets to multi-millennial greenhouse warming in the Earth system model of intermediate complexity LOVECLIM. Surv. Geophys., 32(4-5), 397-416 (doi: 10.1007/s10712-011-9131-5)
Iken A and Bindschadler RA (1986) Combined measurements of subglacial water pressure and surface velocity of Findelengletscher, Switzerland: conclusions about drainage system and sliding mechanism. J. Glaciol., 32(110), 101-119
Janssens I and Huybrechts P (2000) The treatment of meltwater retention in mass-balance parameterizations of the Greenland ice sheet. Ann. Glaciol., 31, 133-140 (doi: 10.3189/172756400781819941)
Joughin I, Fahnestock M, Ekholm S and Kwok R (1997) Balance velocities of the Greenland ice sheet. Geophys. Res. Lett., 24(23), 3045-3048 (doi: 10.1029/97GL53151)
Joughin I, Smith BE, Howat IM, Scambos T and Moon T (2010) Greenland flow variability from ice-sheet-wide velocity mapping. J. Glaciol., 56(197), 415-430 (doi: 10.3189/002214310792447734)
Larour E, Seroussi H, Morlighem M and Rignot e (2012) Continental scale, high order, high spatial resolution, ice sheet modeling using the Ice Sheet System Model (ISSM). J. Geophys. Res., 117(F1), F01022 (doi: 10.1029/2011JF002140)
Meehl GA and 12 others (2007) Global climate projections. In Solomon S and 7 others eds. Climate change 2007: the physical science basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, 747-845
Moon T, Joughin I, Smith B and Howat I (2012) 21st-century evolution of Greenland outlet glacier velocities. Science, 336(6081), 576-578 (doi: 10.1126/science.1219985)
Motyka RJ, Truffer M, Fahnestock M, Mortensen J, Rysgaard S and Howat I (2011) Submarine melting of the 1985 Jakobshavn Isbræ floating tongue and the triggering of the current retreat. J. Geophys. Res., 116(F1), F01007 (doi: 10.1029/2009JF001632)
Nick FM, Vieli A, Howat im and Joughin I (2009) Large-scale changes in Greenland outlet glacier dynamics triggered at the terminus. Nature Geosci., 2(2), 110-114 (doi: 10.1038/ngeo394)
Nick FM and 7 others (2013) Future sea-level rise from Greenland's major outlet glaciers in a warming climate. Nature, 479(7448), 235-238 (doi: 10.1038/nature12068)
Parizek BR and Alley RB (2004) Implications of increased Greenland surface melt under global-warming scenarios: ice-sheet simulations. Quat. Sci. Rev., 23(9-10), 1013-1027 (doi: 10.1016/j.quascirev. 2003.12.024)
Pfeffer WT, Harper JT and O'Neel S (2008) Kinematic constraints on glacier contributions to 21st-century sea-level rise. Science, 321(5894), 1340-1343 (doi: 10.1126/science.1159099)
Price SF, Payne AJ, Howat im and Smith BE (2011) Committed sealevel rise for the next century from Greenland ice sheet dynamics during the past decade. Proc. Natl Acad. Sci. USA (PNAS), 108(22), 8978-8983 (doi: 10.1073/pnas. 1017313108)
Rae J G L and 14 others (2012) Greenland ice sheet surface mass balance: evaluating simulations and making projections with regional climate models. Cryosphere, 6(6), 1275-1294 (doi: 10.5194/tc-6-1275-2012)
Rastner P, Bolch T, Mölg N, Machguth H, Le Bris R and Paul F (2012) The first complete inventory of the local glaciers and ice caps on Greenland. Cryosphere, 6(6), 1483-1495 (doi: 10.5194/tc-6-1483-2012)
Ridley JK, Huybrechts P, Gregory JM and Lowe JA (2005) Elimination of the Greenland Ice Sheet in a high CO2 climate. J. Climate, 18(17), 3409-3427 (doi: 10.1175/JCLI3482.1)
Rignot e and Kanagaratnam P (2006) Changes in the velocity structure of the Greenland Ice Sheet. Science, 311(5673), 986-990 (doi: 10.1126/science. 1121381)
Rignot e and Mouginot J (2012) Ice flow in Greenland for the International Polar Year 2008-2009. Geophys. Res. Lett., 39(11), L11501 (doi: 10.1029/2012GL051634)
Rignot E, Velicogna I, Van den Broeke MR, Monaghan A and Lenaerts J (2011) Acceleration of the contribution of the Greenland and Antarctic ice sheets to sea level rise. Geophys. Res. Lett., 38(5), L05503 (doi: 10.1029/2011GL046583)
Robinson A, Calov R and Ganopolski A (2011) Greenland ice sheet model parameters constrained using simulations of the Eemian Interglacial. Climate Past, 7(2), 381-396 (doi: 10.5194/cp-7-381-2011)
Saito F, Abe-Ouchi A and Blatter H (2007) An improved numerical scheme to compute horizontal gradients at the ice-sheet margin: its effect on the simulated ice thickness and temperature. Ann. Glaciol., 46, 87-96 (doi: 10.3189/172756407782871594)
Schoof C (2010) Ice-sheet acceleration driven by melt supply variability. Nature, 468(7325), 803-806 (doi: 10.1038/nature09618)
Seddik H, Greve R, Zwinger T, Gillet-Chaulet F and Gagliardini O (2012) Simulations of the Greenland ice sheet 100 years into the future with the full Stokes model Elmer/Ice. J. Glaciol., 58(209), 427-440 (doi: 10.3189/ 2012JoG11J177)
Shannon SR and 18 others (in press) Enhanced basal lubrication and the contribution of the Greenland ice sheet to future sea level rise. Proc. Natl Acad. Sci. USA (PNAS)
Shapiro NM and Ritzwoller MH (2004) Inferring surface heat flux distribution guided by a global seismic model: particular application to Antarctica. Earth Planet. Sci. Lett., 223(1-2), 213-224 (doi: 10.1016/j.epsl.2004.04.011)
Shepherd A and 46 others (2012) A reconciled estimate of ice-sheet mass balance. Science, 338(6111), 1183-1189 (doi: 10.1126/science.1228102)
Straneo F and 8 others (2012) Characteristics of ocean waters reaching Greenland's glaciers. Ann. Glaciol., 53(60 Pt 2), 202-210 (doi: 10.3189/2012AoG60A059)
Sundal AV, Shepherd A, Nienow P, Hanna E, Palmer S and Huybrechts P (2011) Melt-induced speed-up of Greenland ice sheet offset by efficient subglacial drainage. Nature, 469(7331), 521-524 (doi: 10.1038/nature09740)
Van de Wal R S W and 6 others (2008) Large and rapid melt-induced velocity changes in the ablation zone of the Greenland Ice Sheet. Science, 321(5885), 111-113 (doi: 10.1126/science. 1158540)
Van den Broeke M and 8 others (2009) Partitioning recent Greenland mass loss. Science, 326(5955), 984-986 (doi: 10.1126/science.1178176)
Wake L, Huybrechts P, Box JE, Hanna E, Janssens I and Milne GA (2009) Surface mass-balance changes of the Greenland ice sheet since 1866. Ann. Glaciol., 50(50), 178-184 (doi: 10.3189/172756409787769636)
Zwally HJ, Abdalati W, Herring T, Larson K, Saba J and Steffen K (2002) Surface melt-induced acceleration of Greenland ice-sheet flow. Science, 297(5579), 218-222 (doi: 10.1126/science.1072708)
Zwally HJ and 11 others (2011) Greenland ice sheet mass balance: distribution of increased mass loss with climate warming; 2003-07 versus 1992-2002. J. Glaciol., 57(201), 88-102 (doi: 10.3189/002214311795306682)
Similar publications
Sorry the service is unavailable at the moment. Please try again later.
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.