[en] To what extent are individual middle Miocene eccentricity-scale benthic foraminiferal
carbon isotope maxima (the so-called CM events) related to changes in marine export
productivity? Here we use benthic foraminiferal accumulation rates from three sites in the
Pacific and Southern Oceans and a geochemical box model to assess relationships between
benthic foraminiferal δ13C records, export productivity, and the global carbon cycle. Results
from Deep Sea Drilling Project Hole 588 and Ocean Drilling Program Site 747 show a
distinct productivity maximum during CM 6 at 13.8 Ma, the time of major expansion of ice
on Antarctica. Productivity maxima during other CM events are only recorded at
high-latitude Site 747. A set of numerical experiments tests whether changes in
foraminiferal δ13C records (CM events) and export productivity can be simulated solely by
sea level fluctuations and the associated changes in global weathering-deposition cycles, by
sea level fluctuations plus global climatic cooling, and by sea level fluctuations plus
invigorated ocean circulation. Consistent with data, the periodic forcing of sea level and
albedo (and associated weathering cycles) produces δ13C variations of the correct temporal
spacing, albeit with a reduced amplitude. A productivity response of the correct magnitude
is achieved by enhancing ocean circulation during cold periods. We suggest that the pacing
of middle Miocene δ13C fluctuations is associated with cyclical sea level variations. The
amplitude, however, is muted perhaps due to the competing effects of a time-lagged
response to sea level lowstands but an immediate response to invigorated ocean circulation
during cold phases.
Disciplines :
Earth sciences & physical geography
Author, co-author :
Diester-Haass, Liselotte; Universität des Saarlandes, Germany > Zentrum für Umweltwissenschaften
Billups, Katharina
Jacquemin, Ingrid ; Université de Liège - ULiège > DER Sc. et gest. de l'environnement (Arlon Campus Environ.) > Agrométéorologie (relation agriculture-environ. physique)
Emeis, Kay C.
Lefebvre, Vincent
François, Louis ; Université de Liège - ULiège > Département d'astrophys., géophysique et océanographie (AGO) > Modélisation du climat et des cycles biogéochimiques
Language :
English
Title :
Paleoproductivity during the middle Miocene carbon isotope events: A data-model approach
Publication date :
2013
Journal title :
Paleoceanography
ISSN :
0883-8305
eISSN :
1944-9186
Publisher :
American Geophysical Union, Washington, United States - District of Columbia
Antoine, D., J.-M. Andre, and, A. Morel, (1996), Oceanic primary production. 2. Estimation at global scale from satellite (coastal zone color scanner) chlorophyll, Global Biogeochem. Cycles, 10, 57-69.
Badger, M. S. P., C. H. Lear, R. D. Pancost, G. L. Foster, T. R. Bailey, M. J. Leng, and, H. A. Abels, (2013), CO2 drawdown following the middle Miocene expansion of the Antarctic Ice Sheet, Paleoceanography, 28, 42-53, doi: 10.1002/palo.20015.
Berger, W. H., and, G. Wefer, (1990), Export production: Seasonality and intermittency, paleoceanographic implications, Palaeogeogr. Palaeoclimatol. Palaeoecol., 89, 245-254.
Coxall, H. K., and, P. A. Wilson, (2011), Early Oligocene glaciation and productivity in the eastern equatorial Pacific: Insights into global carbon cycling, Paleoceanography, 26, PA2221, doi: 10.1029/2010PA002021.
Dessert C., B. Dupré, L. M. François, J. Schott, J. Gaillardet, G. J. Chakrapani, and, S. Bajpai, (2001), Erosion of deccan traps determined by river geochemistry: Impact on the global climate and the 87Sr/86Sr ratio of seawater, Earth Planet. Sci. Lett., 188, 459-474.
Dessert C., B. Dupré, J. Gaillardet, L. M. François, and, C. J. Allègre, (2003), Basalt weathering laws and the impact of basalt weathering on the global carbon cycle, Chem. Geol., 202, 257-273.
Diester-Haass, L., and, S. Nees, (2004), Late Neogene history of paleoproductivity and ice rafting south of Tasmania, in The Cenozoic Southern Ocean: Tectonics, Sedimentation, and Climate Change Between Australia and Antarctica, Geophys. Monogr. Ser., vol. 151, edited by, N. F. Exon, J. P. Kennett, and, M. J. Malone, pp. 253-272, AGU, Washington, D. C., doi: 10.1029/148GM18.253-272.
Diester-Haass, L., and, R. Zahn, (1996), Eocene-Oligocene transition in the Southern Ocean: History of water mass circulation and biological productivity, Geology, 24, 163-166.
Diester-Haass, L., P. A. Meyers, and, T. Bickert, (2004), Carbonate crash and biogenic bloom in the late Miocene: Evidence from ODP Sites 1085, 1086 and 1087 in the Cape Basin, southeast Atlantic Ocean, Paleoceanography, 19, PA1007, doi: 10.1029/2003PA000933.
Diester-Haass, L., K. Billups, and, K.-C. Emeis, (2005), In search of the late Miocene-early Pliocene "Biogenic Bloom" in the Atlantic Ocean (ODP Sites 982, 925, and 1088), Paleoceanography, 20, PA4001, doi: 10.1029/2005PA001139.
Diester-Haass, L., K. Billups, and, K.-C. Emeis, (2006), Late Miocene carbon isotope records and marine biological productivity: Was there a (dusty) link?, Paleoceanography, 21, PA4216, doi: 10.1029/2006PA001267
Diester-Haass, L., K. Billups, D. R. Gröcke, L. François, V. Lefebvre, and, K. C. Emeis, (2009), Mid Miocene paleoproductivity in the Atlantic Ocean and implications for the global carbon cycle, Paleoceanography, 24, PA1209, doi: 10.1029/2008PA001605.
Diester-Haass, L., K. Billups, and, K. C. Emeis, (2011), Marine biological productivity and carbon cycling during the Oligocene to Miocene climate transition, Palaeogeogr. Palaeoclimatol. Palaeoecol., 302, 464-473.
Elmstrom, K. M., and, J. P. Kennett, (1986), Late Neogene paleoceanographic evolution of Site 590: Southwest Pacific, in Initial Rep. Deep Sea Drill. Proj., 90, 1361-1381.
Ennyu A., and, M. A. Arthur, (2004), Early to Middle Miocene paleoceanography in the southern high latitudes off Tasmania, in The Cenozoic Southern Ocean: Tectonics, Sedimentation, and Climate Change Between Australia and Antarctica, Geophys. Monogr. Ser., vol. 151, edited by, N. F. Exon, J. P. Kennett, M. J. Malone, pp. 215-233, AGU, Washington, D. C.
Flower, B. P., and, J. P. Kennett, (1993), Middle Miocene ocean-climate transition: High resolution oxygen and carbon isotopic records from Deep Sea Drilling Project Site 588A, southwest Pacific, Paleoceanography, 8, 811-843.
Flower, B. P., and, J. P. Kennett, (1994), The middle Miocene climatic transition: East Antarctic ice sheet development, deep ocean circulation and global carbon cycling, Palaeogeogr. Palaeoclimatol. Palaeoecol., 108, 537-555.
Föllmi, K. B., C. Badertscher, E. de Kaenel, P. Stille, C. M. John, T. Adatte, and, P. Steinmann, (2005), Phosphogenesis and organic-carbon preservation in the Miocene Monterey Formation at Naples Beach, California: The Monterey hypothesis revisited, Geol. Soc. Am. Bull., 117, 589-619.
François L. M., and, J. C. G. Walker, (1992), Modelling the Phanerozoic carbon cycle and climate: Constraints from the 87Sr/ 86Sr isotopic ratio of seawater, Am. J. Sci., 292, 81-135.
Gaillardet J., B. Dupré, P. Louvat, and, C. J. Allègre, (1999), Global silicate weathering and CO2 consumption rates deduced from the chemistry of the large rivers, Chem. Geol., 159, 3-30.
Herguera, J. C., (2000), Last glacial paleoproductivity patterns in the eastern equatorial Pacific: Benthic foraminifera records, Mar. Micropal., 40, 259-275.
Herguera, J. C., and, W. A. Berger, (1991), Paleoproductivity from benthic foraminifera abundance: Glacial to postglacial change in the west-equatorial Pacific, Geology, 19, 1173-1176.
Hill, P. J., and, N. F. Exon, (2004), Tectonics and basin development of the offshore Tasmanian area incorporating results from deep ocean drilling, in The Cenozoic Southern Ocean: Tectonics, Sedimentation, and Climate Change Between Australia and Antarctica, Geophys. Monogr. Ser., vol. 151, edited by, N. F. Exon, J. P. Kennett, M. J. Malone, pp. 19-42, American Geophysical Union (AGU), Washington, D. C.
Holbourn, A., W. Kuhnt, M. Schulz, and, H. Erlenkeuser, (2005), Impacts of orbital forcing and atmospheric carbon dioxide on Miocene ice-sheet expansion, Nature, 438, 483-487.
Holbourn, A., W. Kuhnt, M. Schulz, J.-A. Flores, and, N. Andersen, (2007), Orbitally paced climate evolution during the middle Miocene "Monterey" carbon-isotope excursion, Earth Planet. Sci. Lett., 261, 534-550.
Holdgate, G. R., I. Cartwright, D. T. Blackburn, M. W. Wallace, S. J. Gallagher, B. E. Wagstaff, and, L. Chung, (2007), The Middle Miocene Yallourn coal seam-The last coal in Australia, Int. J. Coal Geol., 70, 95-115.
Isaacs, C. M., (2001), Depositional framework of the Monterey formation, California, in The Monterey Formation, From Rocks to Molecules, edited by, C. M. Isaacs, and, K. Rullkötter, pp. 1-30, Columbia Univ. Press, New York.
Kennett, J. P., and, C. C. von der Borch, (1986), Southwest Pacific Cenozoic paleoceanography, Deep Sea Drilling Project Leg 90, in Initial Rep. Deep Sea Drill. Proj., 90, Washington, 1493-1517.
Kump, L. R., and, M. A. Arthur, (1999), Interpreting carbon-isotope excursions: Carbonates and organic matter, Chem. Geol. 161, 181-198.
Lawver, L. A., L. M. Gahagan, and, M.-F. Coffin, (1992), The development of paleoseaways around Antarctica, in The Antarctic Paleoenvironment: A Perspective on Global Change, Part One, Antarct. Res. Ser., vol. 56, edited by, J. P. Kennett, and, D. A. Warnke, pp. 7-30, AGU, Washington, D. C.
Lefebvre, V., (2009), Modélisation numérique du cycle du carbone et des cycles biogéochimiques: Application aux perturbations climatiques de l'Ordovicien terminal, du Dévonien terminal et du Miocène moyen, PhD thesis, Univ. Lille 1, Villeneuve d'Ascq, France [Available at: http://ori-nuxeo.univ-lille1.fr/nuxeo/site/esupversions/c14d0084- 96dd-49ca-9111-955897ff342c]
Lefebvre, V., T. Servais, L. François, and, O. Averbuch, (2010), Did a Katian Large Igneous Province trigger the Late Ordovician glaciation? A hypothesis tested with a carbon cycle model, Palaeogeogr. Palaeoclimatol. Palaeoecol., 296, 310-319.
Levitus, S., and, T. P. Boyer, (1994), World Ocean Atlas 1994, vol. 4, Temperature, NOAA Atlas NESDIS, vol. 4, 129 pp., NOAA, Silver Spring, Md.
Lourens, L., F. Hilgen, N. J. Shackleton, J. Laskar, and, D. Wilson, (2004), The Neogene period, in A Geologic Time Scale, F. Gradstein, J. Ogg, and, A. Smith, pp. 409-440, Cambridge Univ. Press, Cambridge, U. K.
Mackensen, A., and, W. U. Ehrmann, (1992), Middle Eocene through Oligocene climate history and paleoceanography in the Southern Ocean: Stable oxygen and carbon isotopes from ODP Sites on Maud Rise and Kerguelen Plateau, Mar. Geol., 108, 1-27.
Majewski, W., and, S. Bohaty, (2010), Surface-water cooling and salinity decrease during the Middle Miocene Climate Transition at Southern Ocean ODP Site 747 (Kerguelen Plateau), Mar. Micropaleontol., 74, 1-14.
Millot R., J. Gaillardet, B. Dupré, and, C. J. Allègre, (2002), The global control of silicate weathering rates and the coupling with physical erosion: New insights from rivers of the Canadian Shield, Earth Planet. Sci. Lett., 196, 83-98.
Nees, S., (1997), Late Quaternary palaeoceanography of the Tasman Sea: The benthic foraminiferal view, Palaeogeogr. Palaeoclimatol. Palaeoecol., 131, 365-389.
Nelson, C. S., and, P. J. Cooke, (2001), History of oceanic front development in the New Zealand sector of the Southern Ocean during the Cenozoic-A synthesis, N. Z. J. Geol. Geophys., 44, 535-553.
Pälike, H., et al. (2006), The heartbeat of the Oligocene climate system, Science, 314, 1894-1898.
Schlich, R., et al. (1989), Introduction, Proc. Ocean Drill. Program Initial Rep., 120, 7-23.
Schmiedl, G., and, A. Mackensen, (1997), Late Quaternary paleoproductivity and deep water circulation in the eastern South Atlantic Ocean: Evidence from benthic foraminifera, Palaeogeogr. Palaeoclimatol. Palaeoecol., 130, 43-80.
Shevenell, A. E., and, J. P. Kennett, (2007), Cenozoic Antarctic cryosphere evolution: Tales from deep-sea sedimentary records, Deep Sea Res. II, 54, 2308-2324.
Shevenell, A. E., J. P. Kennett, and, D. W. Lea, (2008), Middle Miocene ice sheet dynamics, deep-sea temperatures, and carbon cycling: A Southern Ocean perspective, Geochem. Geophys. Geosyst., 9, Q02006, doi: 10.1029/2007GC001736.
Shipboard Scientific Party (2001), Site 1171. In Exon, N. F., Kennett, J. P., Malone, M. J., et al., Proc. ODP, Init. Proc. Ocean Drill. Program Initial Rep., 189, 1-176, doi: 10.2973/odp.proc.ir.189.106.2001.
Suess, E., (1980), Organic carbon flux in the oceans: Relation to surface productivity and oxygen utilization, Nature, 288, 260-263.
Utescher, T., V. Mosbrugger, and, A. Ashraff, (2000), Terrestrial climate evolution in Northwest Germany over the last 25 million years, Palaios, 15, 430-449.
Van Cappellen, P., and, E. D. Ingall, (1996), Redox stabilization of the atmosphere and oceans by phosphorus-limited marine productivity, Science, 271, 493-496.
Van de Wal, R. S. W., B. de Boer, L. J. Lourens, P. Köhler, and, R. Bintanja, (2011), Reconstruction of a continuous high-resolution CO2 record over the past 20 million years, Clim. Past, 7, 1459-1469, doi: 10.5194/cp-7-1459-2011.
Veizer, J., et al. (1999), 87Sr/86Sr, d 13C and d18O evolution of Phanerozoic seawater, Chem. Geol., 161, 59-88.
Verducci, M., L. M. Foresi, G. H. Scott, M. Sprovieri, F. Lirer, and, N. Pelosi, (2009), The middle Miocene climatic transition in the Southern Ocean: Evidence of paleoclimatic and hydrographic changes at Kerguelen plateau from planktonic foraminifers and stable isotopes, Palaeogeogr. Palaeoclimatol. Palaeocol., 280, 371-386.
Vincent, E., and, W. H. Berger, (1985), Carbon dioxide and polar cooling in the Miocene: The Monterey hypothesis, in The Carbon Cycle and Atmospheric CO2: Natural Variations Archean to Present, Geophys. Monogr. Ser., vol. 32, edited by, E. T. Sundquist, and, W. S. Broecker, pp. 455-468, AGU, Washington, D. C., doi: 10.1029/GM032p0455.
Waite, A., L. Diester-Haass, S. Gibbs, R. Rickaby, and, K. Billups, (2008), A top-down and bottom-up comparison of paleoproductivity proxies: Calcareous nannofossil Sr/Ca ratios and benthic foraminiferal accumulation rates, Geochem. Geophys. Geosyst., 9, Q06005, doi: 10.1029/2007GC001812.
Walker, J. C. G., and, J. F. Kasting, (1992), Effects of fuel and forest conservation on future levels of atmospheric carbon dioxide, Palaeogeogr. Palaeoclimatol. Palaeoecol., 97, 151-189.
Woodruff, F., and, S. M. Savin, (1991), Mid-Miocene isotope stratigraphy in the deep sea: High resolution correlations, paleoclimatic cycles, and sediment preservation, Paleoceanography, 6, 755-806.
Wright, J. D., and, K. G. Miller, (1992), Miocene stable isotope stratigraphy, Site 747, Kerguelen Plateau, Proc. Ocean Drill. Program Sci. Results, 120, 855-866.
Wright, J. G., K. G. Miller, and, R. G. Fairbanks, (1992), Early and middle Miocene stable isotopes: Implications for deepwater circulation and climate, Paleoceanography, 7, 357-389.
Yasuda, H., (1997), Late Miocene-Holocene paleoceanography of the western equatorial Atlantic: Evidence from deep-sea benthic foraminifera, Proc. Ocean Drill. Program Sci. Results, 154, 395-432.
Zachos, J. C., and, L. R. Kump, (2005), Carbon cycle feedbacks and the initiation of Antarctic glaciation in the earliest Oligocene, Global Planet. Change, 47, 51-66.
Zachos, J., M. Pagani, L. Sloan, E. Thomas, and, K. Billups, (2001), Trends, rhythms, and aberrations in global climate 65 Ma to present, Science, 292, 686-693.
van der Zwaan, G. J., I. A. P. Duijnstee, M. den Bulk, S. R. Ernst, N. T. Jannink, and, T. J. Kouwenhoven, (1999), Benthic foraminifers: Proxies or problems? A review of paleoecological concepts, Earth Sci. Rev., 46, 213-236.