[en] Using first-principles calculations, we study theoretically the stable 2H hexagonal structure of BaMnO3. We show that from the stable high-temperature P63/mmc structure, the compound should exhibit an improper ferroelectric structural phase transition to a P63cm ground state. Combined with its antiferromagnetic properties, 2H-BaMnO3 is therefore expected to be multiferroic at low temperature. The phase transition mechanism in BaMnO3 appears similar to what was reported in YMnO3 in spite of totally different atomic arrangement, cation sizes, and Mn valence state.
Disciplines :
Physics
Author, co-author :
Varignon, Julien ; Université de Liège - ULiège > Département de physique > Physique théorique des matériaux
Ghosez, Philippe ; Université de Liège - ULiège > Département de physique > Physique théorique des matériaux
Language :
English
Title :
Improper ferroelectricity and multiferroism in 2H-BaMnO3
Publication date :
2013
Journal title :
Physical Review. B, Condensed Matter and Materials Physics
ISSN :
1098-0121
eISSN :
1550-235X
Publisher :
American Physical Society, Woodbury, United States - New York
Volume :
87
Pages :
140403(R)
Peer reviewed :
Peer Reviewed verified by ORBi
Tags :
Tier-1 supercomputer CÉCI : Consortium des Équipements de Calcul Intensif
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
T. Kimura, T. Goto, H. Shintanl, K. Ishizaka, T. Arima, and Y. Tokura, Nature (London) NATUAS 0028-0836 10.1038/nature02018 426, 55 (2003). (Pubitemid 37441280)
T. Goto, T. Kimura, G. Lawes, A. P. Ramirez, and Y. Tokura, Phys. Rev. Lett. PRLTAO 0031-9007 10.1103/PhysRevLett.92.257201 92, 257201 (2004).
N. Hur, S. Park, P. A. Sharma, J. S. Ahn, S. Guha, and S. W. Cheong, Nature (London) NATUAS 0028-0836 10.1038/nature02572 429, 392 (2004). (Pubitemid 38720172)
N. A. Hill, J. Phys. Chem. B JPCBFK 1520-6106 10.1021/jp000114x 104, 6694 (2000).
S. Bhattacharjee, E. Bousquet, and Ph. Ghosez, Phys. Rev. Lett. PRLTAO 0031-9007 10.1103/PhysRevLett.102.117602 102, 117602 (2009).
T. Günter, E. Bousquet, A. David, Ph. Boullay, Ph. Ghosez, W. Prellier, and M. Fiebig, Phys. Rev. B PRBMDO 1098-0121 10.1103/PhysRevB.85. 214120 85, 214120 (2012).
J. M. Rondinelli, A. S. Eidelson, and N. A. Spaldin, Phys. Rev. B PRBMDO 1098-0121 10.1103/PhysRevB.79.205119 79, 205119 (2009).
A. Hardy, Acta Crystallogr. ACCRA9 0365-110X 10.1107/S0365110X6200047X 15, 179 (1962).
B. L. Chamberland, A. W. Sleight, and J. F. Weiher, J. Solid State Chem. JSSCBI 0022-4596 10.1016/0022-4596(70)90133-7 1, 506 (1970).
R. Sondena, S. Stolen, P. Ravindran, T. Grande, and N. L. Allan, Phys. Rev. B PRBMDO 1098-0121 10.1103/PhysRevB.75.184105 75, 184105 (2007).
J. J. Lander, Acta Crystallogr. ACCRA9 0365-110X 10.1107/ S0365110X51000441 4, 148 (1951).
C. Roy and R. C. Budhani, Phys. Rev. B PRBMDO 1098-0121 10.1103/PhysRevB.58.8174 58, 8174 (1998).
S. Satapathy, M. K. Singh, P. Pandit, and P. K. Gupta, Appl. Phys. Lett. APPLAB 0003-6951 10.1063/1.3679176 100, 042904 (2012).
A. N. Christensen and G. Ollivier, J. Solid State Chem. JSSCBI 0022-4596 10.1016/0022-4596(72)90141-7 4, 131 (1972).
Y. Takeda, F. Kanamaru, M. Shimada, and M. Koisumi, Acta Crystallogr. Sect. B ACBCAR 0567-7408 10.1107/S056774087600798X 32, 2464 (1976).
E. J. Cussen and P. D. Battle, Chem. Mater. CMATEX 0897-4756 10.1021/cm991144j 12, 831 (2000).
R. Dovesi, R. Orlando, B. Civalleri, C. Roetti, V. R. Saunders, and C. M. Zicovich-Wilson, Z. Kristallogr. ZEKRDZ 0044-2968 10.1524/zkri.220.5.571.65065 220, 571 (2005); (Pubitemid 40778243)
R. Dovesi, V. R. Saunders, C. Roetti, R. Orlando, C. M. Zicovich-Wilson, F. Pascale, B. Civalleri, K. Doll, N. M. Harrison, I. J. Bush, Ph. D'Arco, and M. Llunell, CRYSTAL09 User's Manual (University of Torino, Torino, 2009).
D. I. Bilc, R. Orlando, R. Shaltaf, G. M. Rignanese, J. Iñiguez, and Ph. Ghosez, Phys. Rev. B PRBMDO 1098-0121 10.1103/PhysRevB.77.165107 77, 165107 (2008).
A. Prikockyte, D. Bilc, P. Hermet, C. Dubourdieu, and Ph. Ghosez, Phys. Rev. B PRBMDO 1098-0121 10.1103/PhysRevB.84.214301 84, 214301 (2011).
I. S. Lim, H. Stoll, and P. Schwerdtfeger, J. Chem. Phys. JCPSA6 0021-9606 10.1063/1.2148945 124, 034107 (2006). The basis set has been reduced to exponent greater than 0.1. (Pubitemid 43133750)
P. J. Hay and W. R. Wadt, J. Chem. Phys. JCPSA6 0021-9606 10.1063/1.448975 82, 299 (1985).
A. Gellé and C. Calzado (private communication).
D. Vanderbilt and R. D. King-Smith, Phys. Rev. B PRBMDO 1098-0121 10.1103/PhysRevB.48.4442 48, 4442 (1993).
C. M. Zicovich-Wilson, R. Dovesi, and V. R. Saunders, J. Chem. Phys. JCPSA6 0021-9606 10.1063/1.1415745 115, 9708 (2001). (Pubitemid 33147331)
In Table I of Ref., Ba and Mn positions were inverted. Then shifting back the z / c coordinates by zMn, we recover atomic position consistent with a nonpolar P63 / m m c phase within the experimental accuracy (i.e., the deviation is extremely small and totally incompatible with the large polarization they report).
Condensation of the nonpolar K3 mode alone does not give rise to any sizable polarization: We get P s = 0.01 μ C cm - 2 as a result of the purely electronic response.
D. Orobengoa, C. Capillas, M. I. Aroyo, and J. M. Perez-Mato, J. Appl. Cryst. A JACGAR 0021-8898 10.1107/S0021889809028064 42, 820 (2009).
J. M. Perez-Mato, D. Orobengoa, and M. I. Aroyo, Acta Crystallogr. Sect. A ACACEQ 0108-7673 10.1107/S0108767310016247 66, 558 (2010).
C. J. Fennie and K. M. Rabe, Phys. Rev. B 1098-0121 10.1103/PhysRevB.72. 100103 72, 100103 (R) (2005). (Pubitemid 43022381)
Although still anomalous (and larger than in YMnO3), the Z Mn * and Z O * are significantly smaller in the P63 / m m c phase than in the cubic perovskite structure (Z Ba * = + 1.89 e, Z Mn * = + 7.97 e, and Z O * = - 1.55 e / - 6.72 e at the relaxed a0 = 3.88 Å).
A. Gellé, J. Varignon, and M. B. Lepetit, Europhys. Lett. EULEEJ 0295-5075 10.1209/0295-5075/88/37003 88, 37003 (2009).
M. Stengel, C. J. Fennie, and Ph. Ghosez, Phys. Rev. B PRBMDO 1098-0121 10.1103/PhysRevB.86.094112 86, 094112 (2012).
Similar publications
Sorry the service is unavailable at the moment. Please try again later.
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.