[en] Hereditary hemorrhagic telangiectasia (HHT) is an autosomal dominant disorder characterized by arteriovenous malformations and hemorrhages. This vascular disease results mainly from mutations in 2 genes involved in the TGF-beta pathway (ENG and ALK1) that are exclusively expressed by endothelial cells. The present study identified miR-27a and miR-205 as two circulating miRNAs differentially expressed in HHT patients. The plasma levels of miR-27a are elevated while those of miR-205 are reduced in both HHT1 and HHT2 patients compared to healthy controls. The role of miR-205 in endothelial cells was further investigated. Our data indicates that miR-205 expression displaces the TGF-beta balance towards the anti-angiogenic side by targeting Smad1 and Smad4. In line, overexpression of miR-205 in endothelial cells reduces proliferation, migration and tube formation while its inhibition shows opposite effects. This study not only suggests that detection of circulating miRNA (miR-27a and miR-205) could help for the screening of HHT patients but also provides a functional link between the deregulated expression of miR-205 and the HHT phenotype.
Disciplines :
Biochimie, biophysique & biologie moléculaire
Auteur, co-auteur :
Tabruyn, Sebastien P.
Hansen, Sylvain ; Université de Liège - ULiège > Département des sciences biomédicales et précliniques > Biologie cellulaire et moléculaire appliquée à l'homme
Ojeda-Fernandez, Maria-Luisa
Bovy, Nicolas ; Université de Liège - ULiège > Département des sciences de la vie > GIGA-R : Biologie et génétique moléculaire
Zarrabeitia, Roberto
Recio-Poveda, Lucia
Bernabeu, Carmelo
Martial, Joseph ; Université de Liège - ULiège > Département des sciences de la vie > Département des sciences de la vie
Botella, Luisa-Maria
Struman, Ingrid ; Université de Liège - ULiège > Département des sciences de la vie > GIGA-R : Biologie et génétique moléculaire
Langue du document :
Anglais
Titre :
MiR-205 is downregulated in hereditary hemorrhagic telangiectasia and impairs TGF-beta signaling pathways in endothelial cells.
McDonald J, Bayrak-Toydemir P, Pyeritz RE (2011) Hereditary hemorrhagic telangiectasia: an overview of diagnosis, management, and pathogenesis. Genet Med 13(7):607-616. doi: 10.1097/GIM.0b013e3182136d32
Mahmoud M, Upton PD, Arthur HM (2011) Angiogenesis regulation by TGFbeta signalling: clues from an inherited vascular disease. Biochem Soc Trans 39(6):1659-1666. doi: 10.1042/BST20110664
Wu MY, Hill CS (2009) Tgf-beta superfamily signaling in embryonic development and homeostasis. Dev Cell 16(3):329-343. doi: 10.1016/j.devcel.2009. 02.012
Pardali E, Goumans MJ, ten Dijke P (2010) Signaling by members of the TGF-beta family in vascular morphogenesis and disease. Trends Cell Biol 20(9):556-567. doi: 10.1016/j.tcb.2010.06.006
Goumans MJ, Valdimarsdottir G, Itoh S, Rosendahl A, Sideras P, ten Dijke P (2002) Balancing the activation state of the endothelium via two distinct TGF-beta type I receptors. EMBO J 21(7):1743-1753. doi: 10.1093/emboj/21.7.1743
Yang WJ, Yang DD, Na S, Sandusky GE, Zhang Q, Zhao G (2005) Dicer is required for embryonic angiogenesis during mouse development. J Biol Chem 280(10):9330-9335
Suarez Y, Fernandez-Hernando C, Pober JS, Sessa WC (2007) Dicer dependent microRNAs regulate gene expression and functions in human endothelial cells. Circ Res 100(8):1164-1173
Kuehbacher A, Urbich C, Zeiher AM, Dimmeler S (2007) Role of Dicer and Drosha for endothelial microRNA expression and angiogenesis. Circ Res 101(1):59-68
Wang S, Olson EN (2009) AngiomiRs-key regulators of angiogenesis. Curr Opin Genet Dev 19(3):205-211. doi: 10.1016/j.gde.2009.04.002
Kuehbacher A, Urbich C, Dimmeler S (2008) Targeting microRNA expression to regulate angiogenesis. Trends Pharmacol Sci 29(1):12-15
Zhou Q, Gallagher R, Ufret-Vincenty R, Li X, Olson EN, Wang S (2011) Regulation of angiogenesis and choroidal neovascularization by members of microRNA-23 ~ 27 ~ 24 clusters. Proc Natl Acad Sci USA 108(20):8287-8292. doi: 10.1073/pnas.1105254108
Lebrin F, Goumans MJ, Jonker L, Carvalho RL, Valdimarsdottir G, Thorikay M, Mummery C, Arthur HM, ten Dijke P (2004) Endoglin promotes endothelial cell proliferation and TGF-beta/ALK1 signal transduction. EMBO J 23(20):4018-4028. doi: 10.1038/sj.emboj.7600386
Blanco FJ, Santibanez JF, Guerrero-Esteo M, Langa C, Vary CP, Bernabeu C (2005) Interaction and functional interplay between endoglin and ALK-1, two components of the endothelial transforming growth factor-beta receptor complex. J Cell Physiol 204(2):574-584. doi: 10.1002/jcp.20311
Korchynskyi O, ten Dijke P (2002) Identification and functional characterization of distinct critically important bone morphogenetic protein-specific response elements in the Id1 promoter. J Biol Chem 277(7):4883-4891. doi: 10.1074/jbc.M111023200
Fichtlscherer S, De Rosa S, Fox H, Schwietz T, Fischer A, Liebetrau C, Weber M, Hamm C, Röxe T, Müller-Ardogan M, Bonauer A, Zeiher A, Dimmeler S (2010) Circulating microRNAs in patients with coronary artery disease. Circ Res 107(5):677-684. doi: 10.1161/circresaha.109.215566
Mitchell P, Parkin R, Kroh E, Fritz B, Wyman S, Pogosova-Agadjanyan E, Peterson A, Noteboom J, O'Briant K, Allen A, Lin D, Urban N, Drescher C, Knudsen B, Stirewalt D, Gentleman R, Vessella R, Nelson P, Martin D, Tewari M (2008) Circulating microRNAs as stable blood-based markers for cancer detection. Proc Natl Acad Sci USA 105(30):10513-10518. doi: 10.1073/pnas.0804549105
Rong H, Liu T, Yang K, Yang H, Wu D, Liao C, Hong F, Yang H, Wan F, Ye X, Xu D, Zhang X, Chao C, Shen Q (2011) MicroRNA-134 plasma levels before and after treatment for bipolar mania. J Psychiatr Res 45(1):92-95. doi: 10.1016/j.jpsychires.2010.04.028
Wang K, Zhang S, Marzolf B, Troisch P, Brightman A, Hu Z, Hood L, Galas D (2009) Circulating microRNAs, potential biomarkers for drug-induced liver injury. Proc Natl Acad Sci USA 106(11):4402-4407. doi: 10.1073/pnas.0813371106
Sadick H, Naim R, Gossler U, Hormann K, Riedel F (2005) Angiogenesis in hereditary hemorrhagic telangiectasia: vEGF165 plasma concentration in correlation to the VEGF expression and microvessel density. Int J Mol Med 15(1):15-19
Fernandez LA, Garrido-Martin EM, Sanz-Rodriguez F, Ramirez JR, Morales-Angulo C, Zarrabeitia R, Perez-Molino A, Bernabeu C, Botella LM (2007) Therapeutic action of tranexamic acid in hereditary haemorrhagic telangiectasia (HHT): regulation of ALK-1/endoglin pathway in endothelial cells. Thromb Haemost 97(2):254-262
Urbich C, Kaluza D, Fromel T, Knau A, Bennewitz K, Boon RA, Bonauer A, Doebele C, Boeckel JN, Hergenreider E, Zeiher AM, Kroll J, Fleming I, Dimmeler S (2012) MicroRNA-27a/b controls endothelial cell repulsion and angiogenesis by targeting semaphorin 6A. Blood 119(6):1607-1616. doi: 10.1182/blood-2011-08- 373886
Ojeda-Fernandez L, Barrios L, Rodriguez-Barbero A, Recio-Poveda L, Bernabeu C, Botella LM (2010) Reduced plasma levels of Ang-2 and sEng as novel biomarkers in hereditary hemorrhagic telangiectasia (HHT). Clin Chim Acta 411(7-8):494-499. doi: 10.1016/j.cca.2009.12.023
Martinez M, Andriantsitohaina R (2011) Microparticles in angiogenesis: therapeutic potential. Circ Res 109(1):110-119. doi: 10.1161/circresaha.110. 233049
van den Boorn J, Daßler J, Coch C, Schlee M, Hartmann G (2012) Exosomes as nucleic acid nanocarriers. Adv Drug Deliv Rev. doi: 10.1016/j.addr.2012.06.011
Halkein J, Tabruyn SP, Ricke-Hoch M, Haghikia A, Nguyen NQ, Scherr M, Castermans K, Malvaux L, Lambert V, Thiry M, Sliwa K, Noel A, Martial JA, Hilfiker-Kleiner D, Struman I (2013) MicroRNA-146a is a therapeutic target and biomarker for peripartum cardiomyopathy. J Clin Investig 123(5):2143-2154. doi: 10.1172/JCI64365
Abdalla SA, Letarte M (2006) Hereditary haemorrhagic telangiectasia: current views on genetics and mechanisms of disease. J Med Genet 43(2):97-110. doi: 10.1136/jmg.2005.030833
Barbara NP, Wrana JL, Letarte M (1999) Endoglin is an accessory protein that interacts with the signaling receptor complex of multiple members of the transforming growth factor-beta superfamily. J Biol Chem 274(2):584-594
Derynck R, Zhang YE (2003) Smad-dependent and Smad-independent pathways in TGF-beta family signalling. Nature 425(6958):577-584. doi: 10.1038/nature02006
Pece-Barbara N, Vera S, Kathirkamathamby K, Liebner S, Di Guglielmo GM, Dejana E, Wrana JL, Letarte M (2005) Endoglin null endothelial cells proliferate faster and are more responsive to transforming growth factor beta1 with higher affinity receptors and an activated Alk1 pathway. J Biol Chem 280(30):27800-27808. doi: 10.1074/jbc.M503471200
Gregory PA, Bracken CP, Bert AG, Goodall GJ (2008) MicroRNAs as regulators of epithelial-mesenchymal transition. Cell Cycle 7(20):3112-3118
Wu H, Zhu S, Mo YY (2009) Suppression of cell growth and invasion by miR-205 in breast cancer. Cell Res 19(4):439-448. doi: 10.1038/cr.2009.18
Albinana V, Bernabeu-Herrero ME, Zarrabeitia R, Bernabeu C, Botella LM (2010) Estrogen therapy for hereditary haemorrhagic telangiectasia (HHT): effects of raloxifene, on endoglin and ALK1 expression in endothelial cells. Thromb Haemost 103(3):525-534. doi: 10.1160/TH09-07-0425
Tabruyn SP, Memet S, Ave P, Verhaeghe C, Mayo KH, Struman I, Martial JA, Griffioen AW (2009) NF-kappaB activation in endothelial cells is critical for the activity of angiostatic agents. Mol Cancer Ther 8(9):2645-2654. doi: 10.1158/1535-7163.MCT-09-0383
Sabatel C, Cornet AM, Tabruyn SP, Malvaux L, Castermans K, Martial JA, Struman I (2010) Sprouty1, a new target of the angiostatic agent 16 K prolactin, negatively regulates angiogenesis. Mol Cancer 9:231. doi: 10.1186/1476-4598-9- 231
Sabatel C, Malvaux L, Bovy N, Deroanne C, Lambert V, Gonzalez ML, Colige A, Rakic JM, Noel A, Martial JA, Struman I (2011) MicroRNA-21 exhibits antiangiogenic function by targeting RhoB expression in endothelial cells. PLoS ONE 6(2):e16979. doi: 10.1371/journal.pone.0016979
Dennler S, Itoh S, Vivien D, ten Dijke P, Huet S, Gauthier JM (1998) Direct binding of Smad3 and Smad4 to critical TGF beta-inducible elements in the promoter of human plasminogen activator inhibitor-type 1 gene. EMBO J 17(11):3091-3100. doi: 10.1093/emboj/17.11.3091