Endemics; Environmental gradients; Katanga (D. R. Congo); Metallophyte; Mining; pCCA (Partial Canonical Correspondance analysis)
Abstract :
[en] Aims
Define the chemical factors structuring plant communities of three copper-cobalt outcrops (Tenke-Fungurume, Katangan Copperbelt, D. R. Congo) presenting extreme gradients.
Methods
To discriminate plant communities, 172 vegetation records of all species percentage cover were classified based on NMDS and the Calinski criterion. Soil samples were analyzed for 13 chemical factors and means compared among communities with ANOVA. Partial canonical correspondence analysis (pCCA) was used to determine amount of variation explained individually by each factor and site effect.
Results
Seven communities were identified. Six of the studied communities were related to distinct sites. Site effect (6.0 % of global inertia) was identified as the most important factor related to plant communities’ variation followed by Cu (5.5 %), pH (3.6 %) and Co (3.5 %). Unique contribution of site effect (3.8 %) was higher than that of Cu (1.1 %) and Co (1.0 %).
Conclusions
In restoration, not only Cu and Co contents will be important to maintain vegetation diversity, attention should also be given to co-varying factors potentially limiting toxicity of metals: pH, organic matter, Ca and Mn. Physical parameters were also identified as important in the creation of adequate conditions for diverse communities. Further studies should focus on the effect of physical parameters and geology.
Bamps P (1973-1993) Flore d'Afrique centrale (Zaïre-Rwanda-Burundi). Jardin Botanique National de Belgique, Meise, Belgique.
Bizoux JP, Brevers F, Meerts P, Graitson E, Mahy G (2004) Ecology and conservation of Belgian populations of Viola calaminaria, a metallophyte with a restricted geographic distribution. Belg J Bot 137: 91-104.
Board of trustees Kew Royal Botanic Gardens (1960-2010) Flora Zambesiaca. Royal Botanic Gardens, Kew, Richmond, United Kingdom.
Borcard D, Legendre P, Drapeau P (1992) Partialling out the spatial component of ecological variation. Ecology 73: 1045-1055.
Bremner JM, Mulvaney CS (1982) Nitrogen-total. In: Page AL, Miller RH, Keeny DR (eds) Methods of soil analysis part 2 chemical and microbiological properties, 2nd edn. American Society of Agronomy and Soil Science Society of America, Madison.
Brooks RR, Malaisse F (1985) The heavy metal-tolerant flora of South-central Africa-a multidisciplinary approach. Balkema, Rotterdam.
Brooks RR, Baker AJM, Malaisse F (1992) Copper flowers. Res Explor 8: 338-351.
Calinski T, Harabasz J (1974) A dendrite method for cluster analysis. Commun Stat 3: 1-27.
Chiarucci A, Baker AJM (2007) Advances in the ecology of serpentine soils. A selection of papers from the Fifth International Conference on Serpentine Ecology, Siena, Italy, 9-13 May 2006. Plant and Soil 293: 217 pp.
Chipeng F, Hermans C, Colinet G, Faucon M-P, Ngongo M, Meerts P, Verbruggen N (2010) Copper tolerance in the cuprophyte Haumaniastrum katangense (S. Moore) P. A. Duvign. & Plancke. Plant Soil 328: 235-244. doi: 10. 1007/s11104-009-0105-z.
Collins RN, Kinsela AS (2011) Pedogenic factors and measurements of the plant uptake of cobalt. Plant Soil 339: 499-512. doi: 10. 1007/s11104-010-0584-y.
Conservatoire et Jardin botaniques de la Ville de Genève and South African National Biodiversity Institute - Pretoria (2013) African plants database. 3. 4. 0 edn, Genève, Switzerland - Pretoria, South Africa.
Delecour F, Kindermans M (1977) Manuel de description des sols. FUSAGx, Gembloux.
Development Core Team R (2009) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna.
Dufrêne M, Legendre P (1997) Species assemblages and indicator species: the need for a flexible asymmetrical approach. Ecol Monogr 67: 345-366.
Duvigneaud P (1958) La végétation du Katanga et des sols métallifères. Bull Soc R Bot Belg 90: 127-286.
Duvigneaud P, Denayer-De Smet S (1963) Cuivre et végétation au Katanga. Bull Soc R Bot Belg 96: 92-231.
Ernst W (1974) Schwermetallvegetation der Erde. G. Fischer, Stuttgart.
Faucon MP, Shutcha MN, Meerts P (2007) Revisiting copper and cobalt concentrations in supposed hyperaccumulators from SC Africa: influence of washing and metal concentrations in soil. Plant Soil 301: 29-36. doi: 10. 1007/s11104-007-9405-3.
Faucon MP, Colinet G, Mahy G, Luhembwe MN, Verbruggen N, Meerts P (2009) Soil influence on Cu and Co uptake and plant size in the cuprophytes Crepidorhopalon perennis and C. tenuis (Scrophulariaceae) in SC Africa. Plant Soil 317: 201-212. doi: 10. 1007/s11104-008-9801-3.
Faucon MP, Meersseman A, Shutcha MN, Mahy G, Luhembwe MN, Malaisse F, Meerts P (2010) Copper endemism in the Congolese flora: a database of copper affinity and conservational value of cuprophytes. Plant Ecol Evol 143: 5-18. doi: 10. 5091/plecevo. 2010. 411.
Faucon M-P, Parmentier I, Colinet G, Mahy G, Ngongo Luhembwe M, Meerts P (2011a) May rare metallophytes benefit from disturbed soils following mining activity? The case of the Crepidorhopalon tenuis in Katanga (D. R. Congo). Restor Ecol 19: 333-343. doi: 10. 1111/j. 1526-100X. 2009. 00585. x.
Faucon MP, Colinet G, Jitaru P, Verbruggen N, Shutcha M, Mahy G, Meerts P, Pourret O (2011b) Relation between cobalt fractionation and its accumulation in metallophytes from South of Central Africa. Mineral Mag 75: 832.
Faucon M-P, Chipeng F, Verbruggen N, Mahy G, Colinet G, Shutcha M, Pourret O, Meerts P (2012) Copper tolerance and accumulation in two cuprophytes of South Central Africa: Crepidorhopalon perennis and C. tenuis (Linderniaceae). Environ Exp Bot 84: 11-16. doi: 10. 1016/j. envexpbot. 2012. 04. 012.
Francois A (1973) L'extrémité occidentale de l'Arc Cuprifère shabien. Gécamines, Likasi (Zaïre).
Gough L, Grace JB (1999) Effects of environmental change on plant species density: comparing predictions with experiments. Ecology 80: 882-890. doi: 10. 1890/0012-9658(1999)080[0882: EOECOP]2. 0. CO;2.
Harrison S (1997) How natural habitat patchiness affects the distribution of diversity in Californian serpentine chaparral. Ecology 78: 1898-1906. doi: 10. 1890/0012-9658(1997)078[1898: HNHPAT]2. 0. CO;2.
Harrison S (1999) Local and regional diversity in a patchy landscape: native, alien, and endemic herbs on serpentine. Ecology 80: 70-80.
ICMM (2006) Good practice guidance for mining and biodiversity. ICMM, London.
Jacobi CM, do Carmo FF, Vincent RC, Stehmann JR (2007) Plant communities on ironstone outcrops: a diverse and endangered Brazilian ecosystem. Biodivers Conserv 16: 2185-2200. doi: 10. 1007/s10531-007-9156-8.
Kabala C, Singh RR (2001) Fractionation and mobility of copper, lead, and zinc in soil profiles in the vicinity of a copper smelter. J Environ Qual 30: 485-492.
Kabata-Pendias A, Pendias H (2001) Trace elements in soils and plants. CRC Press, Boca Raton, FL, USA.
Kalusova V, Le Duc MG, Gilbert JC, Lawson CS, Gowing DJG, Marrs RH (2009) Determining the important environmental variables controlling plant species community composition in mesotrophic grasslands in Great Britain. Appl Veg Sci 12: 459-471.
Kew Royal Botanical Gardens (1952-2008) Flora of tropical East Africa. In: Polhill RM (ed). Royal Boanic Gardens, Kew, UK.
Kirmer A, Tischew S, Ozinga WA, Von Lampe M, Baasch A, van Groenendael JM (2008) Importance of regional species pools and functional traits in colonization processes: predicting re-colonization after large-scale destruction of ecosystems. J Appl Ecol 45: 1523-1530. doi: 10. 1111/j. 1365-2664. 2008. 01529. x.
Kruckeberg AR (1984) California serpentines: flora, vegetation, geology, soils, and management problems. University of California Press, Berkeley.
Kruskal JB (1964a) Multidimensional scaling by optimizing goodness of fit to a non metric hypothesis. Psychometrika 29: 1-27.
Lakanen E, Erviö R (1971) A comparaison of eight exctractants for the determination of plant available micronutrients in soils. Acta Agral Fenn 123: 223-232.
Legendre P, Legendre L (1998) Numerical ecology. Elsevier Science, Amsterdam.
Leteinturier B (2002) Evaluation du potentiel phytocénotique des gisements cuprifères d'Afrique centro-australe en vue de la phytoremédiation de sites pollués par l'activité minière. Faculté des Sciences Agronomiques de Gembloux, Gembloux.
Li Z, McLaren RG, Metherell AK (2001) Cobalt and manganese relationships in New Zealand soils. N Z J Agric Res 44: 191-200.
Li Z, McLaren RG, Metherell AK (2004) The availability of native and applied soil cobalt to ryegrass in relation to soil cobalt and manganese status and other soil properties. N Z J Agric Res 47: 33-43.
Malaisse F (1995) Copper and vegetation in Shaba (Zaire). Bulletin des Seances Academie Royale des Sciences d'Outre-Mer 40: 561-580.
Malaisse F, Colonval-Elenkov E, Brooks RR (1983) The impact of copper and cobalt orebodies upon the evolution of some plant species from Upper Shaba, Zaïre. Plant Syst Evol 142: 207-221. doi: 10. 1007/bf00985899.
Milligan GW, Cooper MC (1985) An examination of procedures for determining the number of clusters in a dataset. Psychometrika 50: 159-179.
Morrison RS, Brooks RR, Reeves RD, Malaisse F (1979) Copper and cobalt uptake by metallophytes from Zaire. Plant Soil 53: 535-539.
O'Dell RE, James JJ, Richards JH (2006) Congeneric serpentine and nonserpentine shrubs differ more in leaf Ca: Mg than in tolerance of low N, low P, or heavy metals. Plant Soil 280: 49-64. doi: 10. 1007/s11104-005-3502-y.
Oksanen JF (2010) Multivariate analysis of ecological communities in R: vegan tutorial.
Párraga-Aguado I, González-Alcaraz MN, Álvarez-Rogel J, Jiménez-Cárceles FJ, Conesa HM (2013) The importance of edaphic niches and pioneer plant species succession for the phytomanagement of mine tailings. Environ Pollut 176: 134-143. doi: 10. 1016/j. envpol. 2013. 01. 023.
Proctor J (1971) The plant ecology of serpentine. II. Plant response to serpentine soils. J Ecol 59: 397-410.
Proctor J, Woodell SRJ (1975) The ecology of serpentine soils. Adv Ecol Res 9: 255-366.
Robinson BH, Brooks RR, Clothier BE (1999) Soil amendments affecting nickel and cobalt uptake by Berkheya coddii: potential use for phytomining and phytoremediation. Ann Bot 84: 689-694. doi: 10. 1006/anbo. 1999. 0970.
Saad L, Parmentier I, Colinet G, Malaisse F, Faucon M-P, Meerts P, Mahy G (2012) Investigating the vegetation-soil relationships on the copper-cobalt rock outcrops of Katanga (D. R. Congo), an essential step in a biodiversity conservation plan. Restor Ecol 20: 405-415. doi: 10. 1111/j. 1526-100X. 2011. 00786. x.
Shepard RN (1962a) The analysis of proximities: multidimensional scaling with an unknown distance function I. Psychometrika 27: 125-139.
Shepard RN (1962b) The analysis of proximities: multidimensional scaling with an unknown distance function II. Psychometrika 27: 219-246.
Shutcha MN, Mubemba MM, Faucon M-P, Luhembwe MN, Visser M, Colinet G, Meerts P (2010) Phytostabilisation of copper-contaminated soil in Katanga: an experiment with three native grasses and two amendments. Int J Phytoremediat 12: 616-632.
Springer U, Klee J (1954) Prüfung der Leistungsfähigkeit von einigen wichtigeren Verfahren zur Bestimmung des Kohlenstoffs mittels Chromschwefelsäure sowie Vorschlag einer neuen Schnellmethode. Z Pflanzenernähr Düngung Bodenkd 64: 1-26.
ter Braak CJF (1986) Canonical correspondence analysis: a new eigenvector technique for multivariate direct gradient analysis. Ecology 67: 1167-1179.
ter Braak CJF (1988) Partial canonical correspondence analysis. In: Bock HH (ed) Classification and related methods of data analysis. North-Holland, Amsterdam, NL.
ter Braak CJF, Šmilauer P (2002) CANOCO reference manual and CanoDraw for windows user's guide: software for canonical community ordination (version 4. 5). Microcomputer Power, Ithaca, NY, USA.
Tichy L, Chytry M (2006) Statistical determination of diagnostic species for site groups of unequal size. J Veg Sci 17: 809-818.
Tropek R, Kadlec T, Karesova P, Spitzer L, Kocarek P, Malenovsky I, Banar P, Tuf IH, Hejda M, Konvicka M (2010) Spontaneous succession in limestone quarries as an effective restoration tool for endangered arthropods and plants. J Appl Ecol 47: 139-147. doi: 10. 1111/j. 1365-2664. 2009. 01746. x.
Tsiripidis I, Papaioannou A, Sapounidis V, Bergmeier E (2010) Approaching the serpentine factor at a local scale-a study in an ultramafic area in northern Greece. Plant Soil 329: 35-50. doi: 10. 1007/s11104-009-0132-9.
Whiting SN, Reeves RD, Baker AJM (2002) Mining, metallophytes and land reclamation. Min Environ Manag 10: 11-16.
Whiting SN, Reeves RD, Richards D, Johnson MS, Cooke JA, Malaisse F, Paton A, Smith JAC, Angle JS, Chaney RL, Ginocchio R, Jaffre T, Johns R, McIntyre T, Purvis OW, Salt DE, Schat H, Zhao FJ, Baker AJM (2004) Research priorities for conservation of metallophyte biodiversity and their potential for restoration and site remediation. Restor Ecol 12: 106-116.
Whittaker RH (1954) The ecology of serpentine soils. Ecology 35: 258-288.
Wild H, Bradshaw AD (1977) The evolutionary effects of metalliferous and other anomalous soils in South Central Africa. Evolution 31: 282-293.
Wolf AT, Harrison SP, Hamrick JL (2000) Influence of habitat patchiness on genetic diversity and spatial structure of a serpentine endemic plant. Conserv Biol 14: 454-463.