[en] The infection of normal mouse mammary EF43 cells by a retroviral vector carrying either Fgf-3 (EF43.Fgf-3) or Fgf-4 (EF43.Fgf-4) cDNA resulted in the transformation of cells displaying different tumorigenic potentials in nude mice (A. Hajitou and C-M. Calberg-Bacq, Int. J. Cancer, 63: 702-709, 1995). EF43.Fgf-4 produced rapidly developing tumors at all sites of inoculation, whereas EF43.Fgf-3 produced slowly growing tumors only in the mammary fat pad. Cells infected with the vector carrying the selection gene alone (EF43.C) were not tumorigenic. The angiogenic properties of these cells were tested in an in vitro angiogenesis model using human umbilical vein endothelial cells (HUVECs) cultured at the surface of a type I collagen gel and their capacity to form tube-like structures on invasion of the gel. Only the conditioned medium (CM) of EF43.Fgf-4 induced an angiogenic morphotype in HUVECs. In parallel, the mRNA expression of matrix metalloproteinase 1 and c-ETS-1 was increased in the HUVECs displaying a differentiated phenotype, whereas the tissue inhibitor of matrix metalloproteinase 1 mRNA level was decreased. Recombinant human fibroblast growth factor 4 (FGF-4) did not induce an angiogenic phenotype in HUVECs by itself. By Western blot analysis, a high expression of vascular endothelial growth factor (VEGF) was detected in the EF43.Fgf-4 CM. This result was confirmed by Northern blot analysis of total RNA extracted from the three cell types; the steady-state level of VEGF mRNA was low and equivalent in EF43.C and EF43.Fgf-3, whereas it was strongly increased in EF43.Fgf-4. Culturing EF43 cells carrying only the selection gene with increasing concentrations of recombinant human FGF-4 resulted in a dose-dependent stimulation of VEGF. The induction of the angiogenic morphotype and the parallel modulations of the biosynthetic phenotype in HUVECs were completely suppressed by adding a neutralizing antibody directed against VEGF to EF43.Fgf-4 CM. Furthermore, inhibition of protein kinase C by bisindoylmaleimide suppressed the angiogenic phenotype induced by the CM of EF43.Fgf-4. Our results point to an indirect angiogenic activity of FGF-4 through the autocrine induction of VEGF secretion by EF43.Fgf-4 cells, an original signaling pathway that might be significant in tumor progression and metastasis.
Disciplines :
Biochemistry, biophysics & molecular biology
Author, co-author :
Deroanne, Christophe ; Université de Liège - ULiège > Département des sciences biomédicales et précliniques > Laboratoire des tissus conjonctifs
Hajitou, Amin
Calberg-Bacq, Claire-Michelle
Nusgens, Betty ; Université de Liège - ULiège > Département des sciences biomédicales et précliniques > Département des sciences biomédicales et précliniques
Lapière, Charles M.
Language :
English
Title :
Angiogenesis by Fibroblast Growth Factor 4 Is Mediated through an Autocrine Up-regulation of Vascular Endothelial Growth Factor Expression
Publication date :
15 December 1997
Journal title :
Cancer Research
ISSN :
0008-5472
eISSN :
1538-7445
Publisher :
American Association for Cancer Research, Inc. (AACR), Baltimore, United States - Maryland
Yamasaki, M., Miyake, A., Tagashari, S., and Itoh, N. Structure and expression of the rat mRNA encoding a novel member of the fibroblast growth factor family. J. Biol. Chem., 271: 15918-15921, 1996
Smallwood, P. M., Munoz-Sanjuan, I., Tong, P., Macke, J. P., Hendry, S. H., Gilbert, D. J., Copeland, N. G., Jenkins, N. A., and Nathans, J. Fibroblast growth factor (FGF) homologous factors: new members of the FGF family implicated in nervous system development. Proc. Natl. Acad. Sci. USA, 93: 9850-9857, 1996.
Coulier, F., Pontarotti, P., Roubin, R., Hartung, H., Goldfarb, M., and Birnbaum, D. Of worms and men: an evolutionary perspective on the fibroblast growth factor (FGF) and FGF receptor families. J. Mol. Evol., 44: 43-56, 1997.
Mason, I. J. The ins and outs of fibroblast growth factors. Cell, 78: 547-552, 1994.
Friesel, R. E., and Maciag, T. Molecular mechanisms of angiogenesis: fibroblast growth factor signal transduction. FASEB J., 9: 919-925, 1995.
Goldfarb, M. Functions of fibroblast growth factors in vertebrate development. Cytokine Growth Factor Rev., 7: 311-325, 1996.
Basilico, C., and Moscatelli, D. The FGF family of growth factors and oncogenes. Adv. Cancer Res., 59: 115-165, 1992.
Dickson, C., Smith, R., Brookes, S., and Peters, G. Tumorigenesis by mouse mammary tumor virus: proviral activation of a cellular gene in the common integration region int-2. Cell, 37: 529-536, 1984.
Peters, G., Brookes, S., Smith, R., Placzeck, M.. and Dickson, C. The mouse homolog of the hst/k-FGF gene is adjacent to int-2 and is activated by proviral insertion in some virally induced mammary tumors. Proc. Natl. Acad. Sci. USA, 86: 5678-5682, 1989.
Clausse, N., Smith, R., Calberg-Bacq, C. M., Peters, G., and Dickson, C. Mouse mammary tumor virus activates Fgf-3/int-2 less frequently in tumors from virgin than from parous mice. Int. J. Cancer, 55: 157-163, 1993.
Murakami, A., Tanaka, H., and Matsuzama, A. Association of hst gene expression with metastatic phenotype in mouse mammary tumors. Cell Growth Differ., 1: 225-231, 1990.
Shackleford, G., Macarthur, C., Kwan, H., and Varmus, H. Mouse mammary tumor virus infection accelerates mammary carcinogenesis in Wnt-I transgenic mice by insertional activation of int-2/Fgf-3 and hst/Fgf-4. Proc. Natl. Acad. Sci. USA, 90: 740-744, 1993.
Günzburg, W. H., Salmons, B., Schalaeffli, A., Moritz-Legrand, S., Jones, W., Sarkar, N. H., and Ullrich, R. Expression of the oncogenes mil and ras abolishes the in vivo differentiation of the mammary epithelial cells. Carcinogenesis (Lond.), 9: 1849-1856, 1988.
Hajitou, A., and Calberg-Bacq, C-M. Fibroblast growth factor 3 is tumorigenic for mouse mammary cells orthotopically implanted in nude mice. Int. J. Cancer, 63: 702-709, 1995.
Hanahan, D., and Folkman, J. Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis. Cell, 86: 353-364, 1996.
D'Amore, P. A., and Shima, D. T. Tumor angiogenesis: a physiological process or genetically determined? Cancer Metastasis Rev., 15: 205-212, 1996.
Montesano, R., and Orci, L. Tumor-promoting phorbol esters induce angiogenesis in vitro, Cell, 42: 469-477, 1985.
Antoine, N., Greimers, R., Deroanne, C., Kusaka, M., Heinen, E., Simar, L. J., and Castronovo, V. AGM-1470, a potent angiogenesis inhibitor, prevents the entry of normal but not transformed endothelial cells into the G1 phase of the cell cycle. Cancer Res., 54: 2073-2076, 1994.
Jaffe, E. A., Nachman, R. L., Becker, C. G., and Minick, C. R. Culture of human endothelial cells derived from umbilical veins: identification by morphologic and immunologic criteria. J. Clin. Invest., 52: 2745-2756, 1973.
Deroanne, C. F., Colige, A. C., Nusgens, B. V., and Lapière, C. M. Modulation of expression and assembly of vinculin during in vitro fibrillar collagen-induced angiogenesis and its reversal, Exp. Cell Res., 224: 215-223, 1996.
Laemmli, U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature (Lond.), 227: 680-685, 1970.
Towbin, H., Staehelin, T., and Gordon, J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc. Natl. Acad. Sci. USA, 76: 4350-4354, 1979.
Souttou, B., Gamby, C., Crepin, M., and Hamelin, R. Tumoral progression of human breast epithelial cells secreting FGF2 and FGF4. Int. J. Cancer, 68: 675-681, 1996.
Chirgwin, J. M., Przybyla, A. E., Mac Donald, R. J., and Rutter, W. J. Isolation of biologically active ribonucleic acid from sources enriched in ribonuclease. Biochemistry, 18: 5294-5299, 1979.
Lambert, C. A., Soudant, P. E., Nusgens, B. V., and Lapière, C. M. Pretranslational regulation of extracellular matrix macromolecules and collagenase expression in fibroblasts by mechanical forces. Lab. Invest., 66: 444-451, 1992.
Angel, P., Poting, A., Mallik, U., Rahmsdorf, H. J., Schorpp, M., and Herrlich, P. Induction of metallothionein and other mRNA species by carcinogens and tumor promoters in primary human skin fibroblasts. Mol. Cell. Biol., 6: 1760-1767, 1986.
Docherty, A. J. P., Lyons, L., Smith, B. J., Wright, E. M., Stephens, P. E., and Harris, T. J. R. Sequence of human tissue inhibitor of metalloproteinases and its identity to erythroid-potentiating activity. Nature (Lond.), 318: 66-69, 1985.
Levy, A. T., Cioce, V., Sobel, M. E., Garbisa, S., Grigioni, W. F., Liotta, L. A., and Stetler-Stevenson, W. G. Increased expression of the Mr 72,000 type IV collagenase in human colonic adenocarcinoma. Cancer Res., 51: 439-444, 1991.
Stetler-Stevenson, W. G., Krutsch, H. C., and Liotta, L. Tissue inhibitor of metalloproteinase (TIMP-2). A new member of the metalloproteinase inhibitor family. J. Biol. Chem., 264: 17374-17378, 1989.
Wernert, N., Raes, M. B., Lassalle, P., Dehouck, M-P., Gosselin, B., and Stehelin, D. C-ets1 proto-oncogene is a transcription factor expressed in endothelial cells during tumor vascularization and other forms of angiogenesis in humans. Am. J. Pathol., 140: 119-127, 1992.
Vandenbunder, B., Pardanaud, L., Jaffredo, T., Mirabel, M. A., and Stehelin, D. Complementary patterns of expression of c-ets1, c-myb, and c-myc in the blood forming system of the chick embryo. Development (Camb.), 107: 265-274, 1989.
Iwasaka, C., Tanaka, K., Abe, M., and Sato, Y. Ets-1 regulates angiogenesis by inducing the expression of urokinase-type plasminogen activator and matrix metalloproteinase-1 and the migration of vascular endothelial cells. J. Cell. Physiol., 169: 522-531, 1996.
Jouanneau, J., Moens, G., Montesano, R., and Thiery J-P. Fgf-1 but not Fgf-4 secreted by carcinoma cells promotes in vitro and in vivo angiogenesis and rapid tumor proliferation. Growth Factors, 12: 37-47, 1995.
Adams, L. M., Ethier, S. P., and Ullrich, R. L. Enhanced in vitro proliferation and in vivo tumorigenic potential of mammary epithelium from BALB/c mice exposed in vivo to γ-radiation and/or 7,12-dimethylbenz(a)anthracene. Cancer Res., 47: 4425-4431, 1987.
Mc Leskey, S. W., Kurebayashi, J., Honig, S. F., Zwiebel, J., Lippman, M. E., Dickson, R. B., and Kern, F. G. Fibroblast growth factor 4 transfection of MCF-7 cells produces cell lines that are tumorigenic and metastatic in ovariectomized or tamoxifen-treated athymic nude mice. Cancer Res., 53: 2168-2177, 1993.
Rak, J., Filmus, J., Finkenzeller, G., Grugel, S., Marmé, D., and Kerbel, R. S. Oncogenes as inducers of tumor angiogenesis. Cancer Metastasis Rev., 14: 263-277, 1995.
Delli Bovi, P., and Basilico, C. Isolation of a rearranged human transforming gene following transfection of Kaposi sarcoma DNA. Proc. Natl. Acad. Sci. USA, 84: 5660-5664, 1987.
Talarico, D., and Basilico, C. The kFGF/hst oncogene induces transformation through an autocrine mechanism that requires extracellular stimulation of the mitogenic pathway. Mol. Cell. Biol., 11: 1138-1145, 1991.
Yoshida, T., Ishimura, K., Sakamoto, H., Yokota, J., Hirohashi, S., Igarashi, K., Sudo, K., and Terada, M. Angiogenic activity of the recombinant hst-1 protein. Cancer Lett., 83: 261-268, 1994.
Kurebayashi, J., McLeskey, S. W., Johnson, D. J., Lippman, M. E., Dickson, R. B., and Kern, F. G. Quantitative demonstration of spontaneous metastasis by MCF-7 human breast cancer cells cotransfected with fibroblast growth factor 4 and LacZ. Cancer Res., 53: 2178-2187, 1993.
Miyagawa, K., Sakamoto, H., Yoshida, T., Yamashita, Y., Mitsui, Y., Furusawa, M., Maeda, S., Takaku, F., Sugimura, T., and Terada, M. hst-1 transforming protein: expression in silkworm cells and characterization as a novel heparin-binding growth factor. Oncogene, 3: 383-389, 1988.
Delli Bovi, P., Curatola, A. M., Newman, K. N., Sato, Y., Moscatelli, D., Hewick, R. M., Rifkin, D., and Basilico, C. Processing, secretion and biological properties of a novel growth factor of the fibroblast growth factor family with oncogenic potentialities. Mol. Cell. Biol., 8: 2933-2941, 1988.
Thomas, K. A. Vascular endothelial growth factor, a potent and selective angiogenic agent. J. Biol. Chem., 271: 603-606, 1996.
Arbiser, J. L., Moses, M. A., Fernandez, C. A., Ghiso, N., Cao, Y., Klauber, N., Frank, D., Brownlee, M., Flynn, E., Parangi, S., Byers, H. R., and Folkman, J. Oncogenic H-ras stimulates tumor angiogenesis by two distinct pathways. Proc. Natl. Acad. Sci. USA, 94: 861-866, 1997.
Larcher, F., Robles, A. I., Duran, H., Murillas, R., Quintanilla, M., Cano, A., Conti, C. J., and Jorcano, J. L. Up-regulation of vascular endothelial growth factor/vascular permeability factor in mouse skin carcinogenesis correlates with malignant progression state and activated H-ras expression levels. Cancer Res., 56: 5391-5396, 1996.
Kolch, W., Martiny-Baron, G., Kieser, A., and Marme, D. Regulation of the expression of the VEGF/VPF and its receptors: role in tumor angiogenesis. Breast. Cancer Res. Treat., 36: 139-155, 1995.
Goto, F., Goto, K., Weindel, K., and Folkman, J. Synergistic effects of vascular endothelial growth factor and basic fibroblast growth factor on the proliferation and cord formation of bovine capillary endothelial cells within collagen gel. Lab. Invest., 69: 491-493, 1993.
Unemori, E. N., Ferrara, N., Bauer, E. A., and Amento, E. P. Vascular endothelial growth factor induces interstitial collagenase expression in human endothelial cells. J. Cell. Physiol., 153: 557-562, 1992.
Fisher, C., Gilbertson-Beadling, S., Powers, E. A., Petzold, G., Poorman, R., and Mitchell M. A. Interstitial collagenase is required for angiogenesis in vitro. Dev. Biol., 162: 499-510, 1994.
Wernert, N., Gilles, F., Fafeur, V., Bouali, F., Raes, M. B., Pyke, C., Dupressoir, T., Seitz, G., Vandenbunder, B., and Stehelin, D. Stromal expression of c-Etsl transcription factor correlates with tumor invasion. Cancer Res., 54: 5683-5688, 1994.
Seymour, L. W., Shoaibi, M. A., Martin, A., Ahmed, A., Elvin, P., Kerr. D. J., and Wakelam, M. J. Vascular endothelial growth factor stimulates protein kinase C-dependent phospholipase D activity in endothelial cells. Lab. Invest., 75: 427-437, 1996.
Guthridge, M. A., Seldin, M., and Basilico, C. Induction of expression of growth-related genes by FGF-4 in mouse fibroblasts. Oncogene, 12: 1267-1278, 1996.
Omitz, D. M., Xu. J.. Colvin, J. S., McEwen, D. G., Mac-Arthur, C. A., Coulier, F., Gao, G., and Goldfarb, M. Receptor specificity of the fibroblast growth factor family. J. Biol. Chem., 271: 15292-15297, 1996.