[fr] La littérature concernant la consommation énergétique du broyage dans les industries minières montre que cette problématique
a été, et est encore, étudiée par de nombreux auteurs. Différents modèles de broyage sont donc disponibles pour ces industries,
en particulier pour le broyage des minerais. Les principaux modèles et certaines de leurs évolutions sont repris dans la présente
revue. Le broyage de la biomasse quant à lui a été bien moins étudié. Quelques études ont néanmoins porté sur la mesure des
consommations énergétiques engendrées par le broyage de biomasses particulières, dans des systèmes particuliers. Rares sont
celles qui prennent en compte suffisamment de paramètres relatifs à la matière entrante et sortante (granulométrie, humidité,
origine, etc.) ou les caractéristiques du système de broyage. Pratiquement, aucun modèle de broyage de la biomasse n’a donc
été proposé. Concernant le broyage des produits densifiés, aucune donnée ne semble disponible. À la lueur des théories de
broyage de l’industrie minière, cette étude propose donc les paramètres à prendre en compte pour une éventuelle modélisation
du broyage de la biomasse et des produits densifiés.
Mots-clés. Broyage, biomasse, pellets, briquettes, théories
Bergman P.C.A, Kiel J.H.A. & Veringa H.J., 2005. Combined torrefaction and pelletisation, the TOP process. Study Report, ECN Biomass, ref ECN-C--05-073. Petten, The Netherlands: ECN Biomass.
Bjerg J., 2004. The Danish Pellet Boom-preconditions for successful market penetration. In: Van Swaaij W.P.M., Fjällström T., Helm P. & Grassi A. Proceedings of the 2nd World conference on biomass for energy, industry and climate protection, 10-14 May 2004, Roma, Italy, 1697-1698.
Böhm T. et al., 2004. Bulk density-RTD results and status of the standardisation. In: Hein M. & Karlschmit M. Proceedings of the International conference on standardisation of solid biofuels, 6-7 October 2004, Leipzig, Germany, 118-129.
Bond F.C., 1952. The third theory of comminution. AIME Trans., 193, 484-494.
Bond F.C., 1961. Crushing and grinding. Calculations. Milwaukee, WI, USA: Allis-Chalmers.
Chamayou A. & Fages J., 2003. Broyage dans les industries agro-alimentaires. In: Melcion J.-P. & Ilari J.-L. Technologie des pulvérulents dans les IAA. Paris: Lavoisier Tec & Doc, 375-406.
Charles R.J., 1957. Energy-size reduction relationship in comminution. AIME Trans., 208, 80-88.
Coello Velázquez A.L., Menéndez-Aguado J.M. & Laborde Brown R., 2008. Grindability of lateritic nickel ores in Cuba. Powder Technol., 182, 113-115.
Demirbas A., 2003. Sustainable cofiring of biomass with coal. Energy Convers. Manage., 44, 1465-1479.
Demirbas A., 2005. Potential applications of renewable energy sources, biomass combustion problems in boiler power systems and combustion related environmental issues. Prog. Energy Combust. Sci., 31, 171-192.
Esteban L.S. & Carrasco J.E., 2006a. Evaluation of different strategies for pulverization of forest biomasses. Powder Technol., 166, 139-151.
Esteban L., Mediavilla I., Fernandez M. & Carrasco J., 2006b. Influence of the size reduction of pine logging residues on the pelletizing process and on the physical properties of pellets obtained. In: Proceedings of the 2nd Conference on pellets, 30 May-1 June 2006, Jönköping, Sweden.
Griffith A.A., 1920. The phenomena of rupture and flow in solids. Philos. Trans. R. Soc. London, Ser. A, A221, 163-197.
Hamelinck C.N., Suurs R.A.A. & Faaij A.P.C., 2005. International bioenergy transport costs and energy balance. Biomass Bioenergy, 29, 114-134.
Hartmann H. et al., 2006. Methods for size classification of wood chips. Biomass Bioenergy, 30, 944-953.
Hosseini S.A. & Shah N., 2009. Multiscale modelling of hydrothermal biomass pretreatment for chip size optimization. Bioresour. Technol., 100, 2621-2628.
Hukki R.T., 1962. Proposal for a solomnic settlement between theories of von Rittinger, Kick and Bond. AIME Trans., 223, 403-408.
Laskowski J. & Lysiak G., 1997. Relationships between resistance characteristics of barley kernels and energy consumption during grinding on hammer mill. Int. Agrophys., 11, 265-271.
Laskowski J., Lysiak G. & Melcion J.P., 1998. Cereal grain resistance analysis in the aspect of energy utilization in the process or disintegration. Int. Agrophys., 12, 205-208.
Laskowski J. & Lysiak G., 1999. Use of compression behaviour of legume seeds in view of impact grinding prediction. Powder Technol., 105, 83-88.
Lecoq O., Guigon P. & Pons M.N., 1999. A grindability test to study the influence of material processing on impact behavior. Powder Technol., 105, 21-29.
Mani S., Tabil L.G. & Sokhansanj S., 2004. Grinding performance and physical properties of wheat and barley straw, corn stover and swichgrass. Biomass Bioenergy, 27, 339-352.
Masson A., 1960. Le broyage, première partie, nature de l'opération, état dimensionnel de la matière broyée, énergie nécessaire au broyage. Rev. Univers. Mines, 9e série, 16(8), 341-349.
Morrell S., 2004. An alternative energy-size relationship to that proposed by Bond for the design and optimisation of grinding circuits. Int. J. Miner. Process., 74, 133-141.
Nikolov S., 2002. A performance model for impact crushers. Miner. Eng., 15, 715-721.
Nishiyama A. et al., 2007. Fuel and emissions properties of stirling engine operated with wood powder. Fuel, 86, 2333-2342.
Novales B., Devaux M.F., Le Deschault de Monredon F. & Melcion J.-P., 2003. Caractérisation de la taille et de la forme des particules. In: Melcion J.-P. & Ilari J.-L. Technologie des pulvérulents dans les IAA. Paris: Lavoisier Tec & Doc, 31-63.
Paulrud S. & Nilsson C., 2004. The effects of particle characteristics on emissions from burning wood fuel powder. Fuel, 83, 813-821.
Rhén C., Öhman M., Gref R. & Wästerlund I., 2007. Effect of raw material composition on woody biomass pellets on combustion characteristics. Biomass Bioenergy, 31, 66-72.
Rothwell T.H., Vigneault C. & Southwell P.H., 1992. Hammermill drill screen evaluation on an energy and economic basis. Can. Agric. Eng., 34, 315-319.
Rumph H., 1973. Physical aspects of comminution and new formulation of a law of comminution. Powder Technol., 7, 145-159.
Ryckmans Y., Allard P., Liegeois B. & Mewissen D., 2006. Conversion of a pulverized coal power plant to 100% wood pellets in Belgium. In: Proceedings of the 2nd Conference on pellets, 30 May-1 June 2006, Jönköping, Sweden. Stockholm: Swedish Bioenergy Association, 59-61.
Sachihito N., Bissombolo A., Furuyama T. & Mori S., 2002. Relationship between Bond's work index (Wi) and uniformity constant of grinding kinetics on tower mill milling limestone. Int. J. Miner. Process., 66, 79-87.
Stambioliadis E.Th., 2002. A contribution to the relationship of energy and particle size in the comminution of britlle particulate materials. Miner. Eng., 15, 707-713.
Tavares L.M. & King R.P, 1998. Single-particle fracture under impact loading. Miner. Process., 54, 1-28.
Temmerman M. & Schenkel Y., 2005. Le broyage de la biomasse. In: Schenkel Y. & Benabdallah B. Guide biomasse énergie. 2e éd. Québec, Canada: les Publications de l'Institut de l'Énergie des Pays Francophones.
Tmej Ch. & Haselbacher H., 2000. Development of wood powder feeding into gas turbine combustion chambers. In: 1st World conference on biomass for energy and industry, 5-9 June 2000, Sevilla, Spain. London: James & James (Science Publishers), 783-786.
Tromans D., 2008. Mineral comminution: energy efficiency considerations. Miner. Eng., 21, 613-620.
Vigneault C., Rothwell T.M. & Bourgeois G., 1992. Hammer mill grinding rate and energy requirements for thin and conventional hammers. Can. Agric. Eng., 34, 203-206.
Wahlund B., Yan J. & Westermark M., 2004. Increasing biomass utilization in energy systems: a comparative study of CO2 reduction and cost for different bioenergy processing options. Biomass Bioenergy, 26, 531-544.
Weibull W., 1939. A statistical theory of strength of materials. Proc. R. Swedish Acad. Eng. Sci. (Ingeniorsvetenskapsakademiens Handlingar), 151, 1-45.
Werner V., Zelkowski J. & Schönert K., 1999. Lab-scale roller table mill for investigating the grinding behavior of coal. Powder Technol., 105, 30-38.
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.