STICS crop model; Yield prediction; Climate variability; N management; Probability risk assessment; Belgium
Abstract :
[en] At the parcel scale, crop models such as STICS are powerful tools to study the effects of variable inputs such as management practices (e.g. nitrogen (N) fertilization). In combination with a weather generator, we propose a general methodology that allows studying the yield variability linked to climate uncertainty, in order to assess the best practices in applying fertilizers. Our study highlights that, using the usual practice of Belgian farmers, namely applying three doses of 60kgN/ha, the yield’s distribution presents the highest degree of asymmetry. This implies the highest probability to achieve yields superior to the mean. The computed return time of expected yield shows that 9 years out of 10, a grain yield of 7.26 tons.ha-1 could at least be achieved.
Disciplines :
Agriculture & agronomy Computer science
Author, co-author :
Dumont, Benjamin ; Université de Liège - ULiège > Sciences et technologie de l'environnement > Mécanique et construction
Basso, Bruno; Michigan State University > W.K. Kellogg Biological Station
Leemans, Vincent ; Université de Liège - ULiège > Sciences et technologie de l'environnement > Mécanique et construction
Destain, Jean-Pierre ; Université de Liège - ULiège > Sciences agronomiques > Phytotechnie des régions tempérées
Bodson, Bernard ; Université de Liège - ULiège > Sciences agronomiques > Phytotechnie des régions tempérées
Destain, Marie-France ; Université de Liège - ULiège > Sciences et technologie de l'environnement > Mécanique et construction
Language :
English
Title :
A Site-Specific Grain Yield Response Surface : Computing the Identity Card of a Crop Under Different Nitrogen Management Scenarios
Publication date :
June 2013
Event name :
EFITA-WCCA-CIGR 2013 - Sustainable Agriculture through ICT innovation