[en] A graded distribution of antidots in superconducting a-Mo79Ge21 thin films has been investigated
by magnetization and magneto-optical imaging measurements. The pinning landscape has
maximum density at the sample border, decreasing linearly towards the center. Its overall
performance is noticeably superior than that for a sample with uniformly distributed antidots: For
high temperatures and low fields, the critical current is enhanced, whereas the region of
thermomagnetic instabilities in the field-temperature diagram is significantly suppressed. These
findings confirm the relevance of graded landscapes on the enhancement of pinning efficiency, as
recently predicted by Misko and Nori [Phys. Rev. B 85, 184506 (2012)].
Disciplines :
Physics
Author, co-author :
Motta, M.; Universidade Federal de Sao Carlos, Brazil
Colauto, F.; Universidade Federal de Sao Carlos, Brazil
Ortiz, W.A.; Universidade Federal de Sao Carlos, Brazil
Fritzsche, J.; Chalmers University of Technology, Sweden
Cuppens, J.; Katholieke Universiteit Leuven - KUL
Gillijns, W.; Katholieke Universiteit Leuven - KUL
Moshchalkov, V.V.; Katholieke Universiteit Leuven - KUL
Johansen, T.H.; University of Oslo, Norway
Sanchez, A.
Silhanek, Alejandro ; Université de Liège - ULiège > Département de physique > Physique de la matière condensée
Language :
English
Title :
Enhanced pinning in superconducting thin films with graded pinning landscapes
Publication date :
30 May 2013
Journal title :
Applied Physics Letters
ISSN :
0003-6951
eISSN :
1077-3118
Publisher :
American Institute of Physics, Melville, United States - New York
Volume :
102
Pages :
212601
Peer reviewed :
Peer Reviewed verified by ORBi
Funders :
ULg - University of Liège F.R.S.-FNRS - Fonds de la Recherche Scientifique
Funding text :
This work was partially supported by the Brazilian funding agencies FAPESP and CNPq, the Methusalem Funding of the Flemish Government, the Fund for Scientific Research-Flanders (FWO-Vlaanderen), the program for scientific cooperation F.R.S.-FNRS-CNPq, and Spanish projects
CSD2007-00041 and MAT2012-35370. The work of A.V.S. was partially supported by “Mandat d’Impulsion Scientifique” of the F.R.S.-FNRS and the crédit de démarrage U.Lg.
A. M. Campbell and J. E. Evetts, Adv. Phys. 21, 199 (1972). 10.1080/00018737200101288
G. Blatter, M. V. Feigel'man, V. B. Geshkeinbein, A. I. Larkin, and V. M. Vinokur, Rev. Mod. Phys. 66, 1125 (1994). 10.1103/RevModPhys.66.1125
E. H. Brandt, Rep. Prog. Phys. 58, 1465 (1995). 10.1088/0034-4885/58/11/ 003
D. Larbalestier, A. Gurevich, D. M. Feldmann, and A. Polyanskii, Nature 414, 368 (2001). 10.1038/35104654
D. J. Morgan and J. B. Ketterson, Phys. Rev. Lett. 80, 3614 (1998). 10.1103/PhysRevLett.80.3614
M. Baert, V. V. Metlushko, R. Jonckheere, V. V. Moshchalkov, and Y. Bruynseraede, Phys. Rev. Lett. 74, 3269 (1995). 10.1103/PhysRevLett.74.3269
V. Vlasko-Vlasov, U. Welp, V. Metlushko, and G. W. Crabtree, Physica C 341-348, 1281 (2000). 10.1016/S0921-4534(00)00895-9
M. Pannetier, R. J. Wijngaarden, I. Floan, J. Rector, B. Dam, R. Griessen, P. Lahl, and R. Wördenweber, Phys. Rev. B 67, 212501 (2003). 10.1103/PhysRevB.67.212501
M. Menghini, R. J. Wijngaarden, A. V. Silhanek, S. Raedts, and V. V. Moshchalkov, Phys. Rev. B 71, 104506 (2005). 10.1103/PhysRevB.71.104506
M. Motta, F. Colauto, R. Zadorosny, T. H. Johansen, R. B. Dinner, M. G. Blamire, G. W. Ataklti, V. V. Moshchalkov, A. V. Silhanek, and W. A. Ortiz, Phys. Rev. B 84, 214529 (2011). 10.1103/PhysRevB.84.214529
R. G. Mints and A. L. Rakhmanov, Rev. Mod. Phys. 53, 551 (1981). 10.1103/RevModPhys.53.551
D. V. Denisov, A. L. Rakhmanov, D. V. Shantsev, Y. M. Galperin, and T. H. Johansen, Phys. Rev. B 73, 014512 (2006). 10.1103/PhysRevB.73.014512
V. Misko, S. Savel'ev, and F. Nori, Phys. Rev. Lett. 95, 177007 (2005). 10.1103/PhysRevLett.95.177007
V. Misko, S. Savel'ev, and F. Nori, Phys. Rev. B 74, 024522 (2006). 10.1103/PhysRevB.74.024522
V. R. Misko, D. Bothner, M. Kemmler, R. Kleiner, D. Koelle, F. M. Petters, and F. Nori, Phys. Rev. B 82, 184512 (2010). 10.1103/PhysRevB.82.184512
M. Kemmler, C. Gürlich, A. Sterck, H. Pöhler, M. Neuhaus, M. Siegel, R. Kleiner, and D. Koelle, Phys. Rev. Lett. 97, 147003 (2006). 10.1103/PhysRevLett.97.147003
A. V. Silhanek, W. Gillijns, V. V. Moshchalkov, B. Y. Zhu, J. Moonens, and L. H. A. Leunissen, Appl. Phys. Lett. 89, 152507 (2006). 10.1063/1.2361172
C. P. Bean, Phys. Rev. Lett. 8, 250 (1962); 10.1103/PhysRevLett.8.250
C. P. Bean, Rev. Mod. Phys. 36, 31 (1964). 10.1103/RevModPhys.36.31
R. A. Richardson, O. Pla, and F. Nori, Phys. Rev. Lett. 72, 1268 (1994). 10.1103/PhysRevLett.72.1268
C. Reichhardt, C. J. Olson, J. Groth, S. Field, and F. Nori, Phys. Rev. B 52, 10441 (1995). 10.1103/PhysRevB.52.10441
V. R. Misko and F. Nori, Phys. Rev. B 85, 184506 (2012). 10.1103/PhysRevB.85.184506
P. H. Kes and C. C. Tsuei, Phys. Rev. B 28, 5126 (1983). 10.1103/PhysRevB.28.5126
L. E. Helseth, R. W. Hansen, E. I. Ilyashenko, M. Baziljevich, and T. H. Johansen, Phys. Rev. B 64, 174406 (2001). 10.1103/PhysRevB.64.174406
E. Altshuler and T. H. Johansen, Rev. Mod. Phys. 76, 471 (2004). 10.1103/RevModPhys.76.471
M. Motta, F. Colauto, W. A. Ortiz, J. I. Vestgarden, T. H. Johansen, J. Cuppens, V. V. Moshchalkov, and A. V. Silhanek, e-print arXiv:1109.2532 (2011).
Flux avalanches in superconducting films develop only below an upper threshold temperature, which is characteristic of each sample. For the sample named Plain in this work, this threshold temperature is 2.6 K, as determined by magnetic measurements, a value that we cannot achieve in the cold-finger type cryostat of the magneto-optical imaging setup. We present instead an avalanche observed on a sister plain film of larger dimensions (2.5 mm × 2.5 mm), at T = 2.8 K and H = 2.2 Oe.
S. Jin, H. Mavoori, C. Bower, and R. B. van Dover, Nature 411, 563 (2001). 10.1038/35079030
M. Baziljevich, A. V. Bobyl, D. V. Shantsev, E. Altshuler, T. H. Johansen, and S. I. Lee, Physica C 369, 93 (2002). 10.1016/S0921-4534(01)01226-6
F. Colauto, E. Choi, J. Y. Lee, S. I. Lee, E. J. Patiño, M. G. Blamire, T. H. Johansen, and W. A. Ortiz, Appl. Phys. Lett. 96, 092512 (2010). 10.1063/1.3350681
F. Colauto, E. J. Patiño, M. G. Blamire, and W. A. Ortiz, Supercond. Sci. Technol. 21, 045018 (2008). 10.1088/0953-2048/21/4/045018
D. Ray, C. J. Olson Reichhardt, B. Jankó, and C. Reichhardt, e-print arXiv:1210.1229v1 (2012).
Y. L. Wang, M. L. Latimer, Z. L. Xiao, R. Divan, L. E. Ocola, G. W. Crabtree, and W. K. Kwok, private communication (2013).