[en] Description of the subject. Dairy production is identified as a major source of methane (CH4) emissions. Selective breeding represents one method for mitigating CH4 emissions but practical and cheap ways to measure this trait are not currently available. In the present study, four CH4 indicator traits based on milk fatty acid (FA) contents were referenced from the literature.
Objectives. The aim of the study was to use these literature CH4 indicators for assessing the variability of methane emissions emitted by dairy cows.
Method. Literature CH4 indicator traits were originally defined based on the measurements of FA content by gas chromatography. However, these measurements were not available for all the available cows in our studied population. A sample of 602 gas chromatographic analyses was therefore used to develop a calibration equation for predicting the literature CH4 indicators based on milk mid-infrared (MIR) spectra. This spectral information was available for all the studied cows. Then, in a second step, in order to predict the literature CH4 indicator traits, the developed MIR prediction equations were applied to the 604,028 recorded spectral data collected between 2007 and 2011 for 70,872 cows in their first three lactations. Genetic parameters for these traits were then estimated using single trait test-day random regression animal models.
Results. The predicted MIR literature CH4 estimates were in the expected range from 350 ± 40 to 449 ± 65 g per day. The averaged predicted MIR CH4 emission (g per day) increased from the beginning of lactation, reached the highest level at the peak of lactation and then decreased towards the end of lactation. The average daily heritability values were 0.29-0.35, 0.26-0.40, and 0.22-0.37 for the different studied CH4 indicators for the first three lactations, respectively. The largest differences between the estimated breeding values of sires that had daughters in production eructing the highest and the lowest CH4 content was 24.18, 29.33 and 27.77 kg per lactation for the first three parities. Low negative correlations were observed between CH4 indicator traits and milk yield. Positive genetic correlations were estimated between CH4 indicator traits and milk fat and protein content.
Conclusions. This study showed the feasibility of using MIR spectrometry results to predict fatty acid derived CH4 indicator traits developed in the literature. Moreover, the estimated genetic parameters of these traits suggested a potential phenotypic and genetic variability of the daily quantity of CH4 eructed by Holstein dairy cows. [fr] Description du sujet. La production laitière est reconnue comme une des sources majeures d’émissions de méthane (CH4). Le recours à un programme de sélection spécifique pourrait être une bonne méthode pour optimiser les émissions de méthane par les vaches laitières. Le développement d’un tel programme nécessiterait un nombre important d’enregistrements relatifs aux émissions de méthane. Malheureusement, aucune méthode pratique et bon marché n’existe actuellement pour créer une telle base de données. Cependant, quatre indicateurs CH4 basés sur les quantités en acides gras dans la matière grasse laitière ont été recensés dans la littérature.
Objectifs. L’objectif de cette étude est d’utiliser ces indicateurs de la littérature afin d’apprécier la variabilité des émissions de méthane éructées par les vaches laitières.
Méthode. Ces indicateurs utilisent les quantités en acides gras obtenues par chromatographie en phase gazeuse. Comme ce type de données n’est pas disponible pour toute la population laitière, un échantillon de 602 analyses chromatographiques a été créé dans cette étude afin de développer une équation de calibrage permettant de prédire les quantités de méthane émises à partir du spectre moyen infrarouge (MIR) du lait qui est disponible pour toutes les vaches étudiées. Ensuite, l’équation de calibrage ainsi obtenue a été appliquée sur 604 028 données spectrales enregistrées entre 2007 et 2011 auprès de 70 872 vaches au cours de leurs trois premières lactations afin de prédire les quantités de méthane émises. Les paramètres génétiques de ces nouveaux indicateurs méthane prédits par MIR ont également été estimés en utilisant un modèle animal de type jour de test avec régressions aléatoires.
Résultats. Ces quantités prédites par MIR variaient selon une gamme attendue s’étalant entre 350 ± 40 et 449 ± 65 g par jour. L’émission prédite moyenne de CH4 en g par jour augmentait au début de la lactation, atteignait sa plus haute concentration au pic de lactation et ensuite diminuait jusqu’à la fin de la lactation. Les héritabilités journalières moyennes variaient entre 0,29-0,35 ; 0,26-0,40 et 0,22-0,37 pour les différents indicateurs méthane étudiés au cours des trois premières lactations. Les plus grandes différences entre les valeurs d’élevage estimées pour des taureaux ayant des filles en production émettant le plus et le moins de méthane étaient de 24,18 ; 29,33 et 27,77 kg par lactation pour les trois premières lactations. Des corrélations faiblement négatives ont été observées entre les indicateurs CH4 et la quantité de lait. À l’inverse, des corrélations positives ont été estimées entre ces mêmes indicateurs et les taux en matières grasses et en protéines.
Conclusions. Cette étude montre la possibilité de prédire des indicateurs méthane issus de la littérature et utilisant les concentrations en acides gras dans la matière grasse laitière à partir de la spectrométrie MIR. De plus, cette étude suggère également à partir des paramètres génétiques obtenus l’existence d’une variabilité phénotypique et génétique des quantités de méthane éructées par les vaches laitières Holstein.
Banos G. & Coffey M. P., 2010. Genetic association between body energy measured throughout lactation and fertility in dairy cattle. Animal, 4, 189-199.
Bastin C., Gengler N. & Soyeurt H., 2011. Phenotypic and genetic variability of production traits and milk fatty acid contents across days in milk for Walloon Holstein first-parity cows. J. Dairy Sci., 94, 4152-4163.
Beauchemin K.A., Kreuzer M., O’Mara F. & McAllister T.A., 2008. Nutritional management for enteric methane abatement: a review. Austr. J. Exp. Agric., 48, 21-27.
Berry D.P. et al., 2007. Genetics of grass dry matter intake, energy balance, and digestibility in grazing Irish dairy cows. J. Dairy Sci., 90, 4835-4845.
Capper J.L., Cady R.A. & Bauman D.E., 2009. The environmental impact of dairy production: 1944 compared with 2007. J. Anim. Sci., 87, 2160-2167.
Cassandro M., Cecchinato A., Battagin M. & Penasa M., 2010. Genetic parameters of methane production in Holstein Friesian cows. In: Proceeding of the 9th World Congress on Genetics Applied to Livestock Production (WCGALP), 1-6August 2010, Leipzig, Germany.
Chilliard Y., Ferlay A., Mansbridge R.M. & Doreau M., 2000. Ruminant milk fat plasticity: nutritional control of saturated, polyunsaturated, trans and conjugated fatty acids. Ann. Zootech., 49, 181-205.
Chilliard Y., Martin C., Rouel J. & Doreau M., 2009. Milk fatty acids in dairy cows fed whole crude linseed, extruded linseed, or linseed oil, and their relationship with methane output. J. Dairy Sci., 92, 5199-5211.
Couvreur S. et al., 2007. Composition of milk fat from cows selected for milk fat globule size and offered either fresh pasture or a corn silage-based diet. J. Dairy Sci., 90, 392-403.
de Haas Y. et al., 2011. Genetic parameters for predicted methane production and potential for reducing enteric emissions through genomic selection. J. Dairy Sci., 94, 6122-6134.
Dehareng F. et al., 2012. Potential use of milk mid-infrared spectra to predict individual methane emission of dairy cows. Animal, 6, 1694-1701.
Demeyer D.I. & van Nevel C.J., 1975. Methanogenesis, an integrated part of carbohydrate fermentation and its control. In: McDonald I.W. & Warner A.C.I., eds. Digestion and metabolism in the ruminant. Armidale, Australia: University of New England, 366-382.
Dijkstra J. et al., 2011. Relationships between methane production and milk fatty acid profiles in dairy cattle. Anim. Feed Sci. Tech., 166-167, 590-595.
Friggens N.C. & Badsberg J.H., 2007. The effect of breed and parity on curves of body condition during lactation estimated using a nonlinear function. Animal, 1, 565-574.
Garnsworthy P.C., Craigon J., Hernandez-Medrano J.H. & Saunders N., 2012. Variation among individual dairy cows in methane measurements made on farm during milking. J. Dairy Sci., 95, 3181-3189.
Gengler N., Wiggans G.R. & Gillon A., 2005. Adjustment for heterogeneous covariance due to herd milk yield by transformation of test-day random regressions. J. Dairy Sci., 88, 2981-2990.
Grainger C. et al., 2008. Use of monensin controlled-release capsules to reduce methane emissions and improve milk production of dairy cows offered pasture supplemented with grain. J. Dairy Sci., 91, 1159-1165.
Grainger C. et al., 2010. Supplementation with whole cottonseed causes long-term reduction of methane emissions from lactating dairy cows offered a forage and cereal grain diet. J. Dairy Sci., 93, 2612-2619.
Hegarty R.S., Goopy J.P., Herd R.M. & McCorkell B., 2007. Cattle selected for lower residual feed intake have reduced daily methane production. J. Anim. Sci., 85, 1479-1486.
Heimeier D. et al., 2010. Genetic basis for methane emission in the dairy cow. In: Proceedings of the 4th International Conference on Greenhouse Gases and Animal Agriculture, Banff, Canada, 95-96.
IPCC (Intergovernmental Panel on Climate Change), 2006. 2006 IPCC guidelines for national greenhouse gas inventories. Hayama, Japan: Institute for Global Environmental Strategies (IGES).
Johnson K. et al., 1994. Measurement of methane emissions from ruminant livestock using a sulfur hexafluoride tracer technique. Environ. Sci. Tech., 28, 359-362.
Johnson K.A. & Johnson D.E., 1995. Methane emissions from cattle. J. Anim. Sci., 73, 2483-2492.
Lassen J., Madsen J. & Løvendahl P., 2012. Heritability estimates for methane emission in Holstein cows using breath measurements. In: Abstracts of the 63rd Annual Meeting of EAAP, 21-31 August 2012, Bratislava, Slovakia. Wageningen, The Netherlands: Wageningen Academic Publishers, 86.
Madsen J. et al., 2010. Methane and carbon dioxide ratio in excreted air for quantification of methane production in ruminants. Livest. Sci., 129, 223-227.
Martin C. et al., 2008. Methane output and diet digestibility in response to feeding dairy cows crude linseed, extruded linseed, or linseed oil. J. Anim. Sci., 86, 2642-2650.
Misztal I., 2011. BLUPF90 family of programs, http://nce.ads.uga.edu/wiki/doku.php?id=application_programs, (02/10/2011).
Mohammed R., McGinn S.M. & Beauchemin K.A., 2011. Prediction of enteric methane output from milk fatty acid concentrations and rumen fermentation parameters in dairy cows fed sunflower, flax, or canola seeds. J. Dairy Sci., 94, 6057-6068.
Moss A.R., Jouany J.P. & Newbold J., 2000. Methane production by ruminants: its contribution to global warming. Ann. Zootech., 49, 231-253.
NRC (National Research Council), 2001. Nutrient requirements of dairy cattle. 7th revised ed. Washington: National Academic Press, 19.
Smith et al., 2007. Agriculture. In: Metz B. et al., eds. Contribution of working group III to the 4th assessment report of the Intergovernmental Panel on Climate Change. Cambridge, UK: Cambridge University Press, 499-540.
Sonesson U., Cederberg C. & Berglund M., 2009. Greenhouse gas emissions in milk production. Decision support for climate certification, http://www.klimatmarkningen.se/wp-content/uploads/2009/12/2009-3-milk.pdf, (15/05/13).
Soyeurt H. et al., 2011. Mid-infrared prediction of bovine milk fatty acids across multiple breeds, production systems and countries. J. Dairy Sci., 94, 1657-1667.
van Zijderveld S.M. et al., 2011. Dietary inclusion of diallyl disulfide, yucca powder, calcium fumarate, an extruded linseed product, or medium-chain fatty acids does not affect methane production in lactating dairy cows. J. Dairy Sci., 94, 3094-3104.
Wall E., Simm G. & Moran D., 2010. Developing breeding schemes to assist mitigation of greenhouse gas emissions. Animal, 4, 366-376.