[en] We address the problem of detecting slow-moving targets using a non-sideloking monostatic space-time adaptive processing (STAP) radar. The construction of optimum weights at each range implies the estimation of the clutter covariance matrix. This is typically done by straight averaging of neighboring data snapshots. The range-dependence of these snapshots generally results in poor performance. We present two new methods that handle the rangedependence by exploiting the geometry of the direction-Doppler curves.
Disciplines :
Electrical & electronics engineering
Author, co-author :
Lapierre, Fabian
Van Droogenbroeck, Marc ; Université de Liège - ULiège > Dép. d'électric., électron. et informat. (Inst.Montefiore) > Télécommunications
Verly, Jacques ; Université de Liège - ULiège > Dép. d'électric., électron. et informat. (Inst.Montefiore) > Exploitation des signaux et images
Language :
English
Title :
New methods for handling the range dependence of the clutter spectrum in non-sidelooking monostatic STAP radars
Publication date :
April 2003
Event name :
ICASSP, IEEE International Conference on Acoustics, Speech, and Signal Processing - Proceedings
Event place :
Hong-Kong, China
Audience :
International
Main work title :
International Conference on Acoustics, Speech, and Signal Processing (ICASSP 2003), Proceedings, Volume 5
G. BORSARI, Mitigating effects on stap processing caused by an inclined array, IEEE National Radar Conference, Dallas, (12-13 May 1998), pp. 135-140.
L. BRENNAN AND L. REED, Theory of adaptive radar, IEEE Transactions on Aerospace and Electronic Systems (AES), 9 (1973), pp. 237-252.
R. KLEMM, Space-Time Adaptive Processing: Principles and Applications, IEE Radar, Sonar, Nav. and Avionics 9, 2000.
F. LAPIERRE AND J. VERLY, The range-dependance problem of clutter spectrum for non-sidelooking monostatic stap radars, 21st Benelux Meeting on Systems and Control, Veldhoven, The Netherlands, (March 2002).
I. REED, J. MALLETT, AND L. BRENNAN, Rapid convergence rate in adaptive arrays, IEEE Trans. on Aerospace and Electronic Systems (AES), 10 (1974), pp. 853-863.
J. WARD, Space-time adaptive processing for airborne radar, Technical Report 1015, MIT Lincoln Laboratory, (1994).
Similar publications
Sorry the service is unavailable at the moment. Please try again later.
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.