[en] Well-integrated water management can notably require
estimating low flows at any point of a river. Depending
on the management practice, it can be needed for various return
periods. This is seldom addressed in the literature. This
paper shows the development of a full analysis chain including
quality analysis of gauging stations, low-flow frequency
analysis, and building of a global model to assess low-flow
indices on the basis of catchment physical parameters.
The most common distributions that fit low-flow data in
Wallonia were two-parameter lognormal and gamma. The
recession coefficient and percolation were the most explanatory
variables, regardless of the return period. The determination
coefficients of the models ranged from 0.51 to 0.67 for
calibration and from 0.61 to 0.80 for validation. The regression
coefficients were found to be linked to the return period.
This was used to design a complete equation that gives the
low-flow index based on physical parameters and the desired
return period (in a 5 to 50 yr range).
The interest of regionalisation and the development of regional
models are also discussed. Four homogeneous regions
are identified, but to date the global model remains more robust
due to the limited number of 20-yr-long gauging stations.
This should be reconsidered in the future when enough
data will be available.
Research Center/Unit :
Curagx
Disciplines :
Environmental sciences & ecology
Author, co-author :
Grandry, Maud ; Université de Liège - ULiège > Sciences et technologie de l'environnement > Systèmes Sol-Eau
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
Abi-Zeid, I. and Bob́ee, B.: La mod́elisation stochastique des ́etiages: une revue bibliographique, J. Water Sci., 12, 459-484, 1999. (Pubitemid 30177376)
Bauwens, A., Sohier, C., and Degŕe, A.: Hydrological response to climate change in the Lesse and the Vesdre catchments: contribution of a physically based model (Wallonia, Belgium), Hydrol. Earth Syst. Sci., 15, 1745-1756, doi:10.5194/hess-15-1745-2011, 2011.
Chen, Y. D., Huang, G., Shao, Q., and Xu C.-Y.: Regional analysis of low flow using L-moments for Dongjiang Basin, South China, Hydrolog. Sci. J., 51, 1051-1064, 2006. (Pubitemid 44873464)
Christians, C.: Les degŕes de priorit́e des remembrements de biens ruraux en Belgique: ́etude ǵeographique des structures et premìeres propositions de priorit́es, Rev. Agr.-Brussels, 11/12, 1439-1505, 1971.
Condie, R. and Nix, G. A.: Modelling of low flow frequency distributions and parameter estimation, in: Proceedings of the International Water Resources Symposium, Water for Arid Lands, Teheran, Iran, 8-9 December 1975.
Confais, J. and Le Guen, M.: Premiers pas en ŕegression lińeaire avec SAS(r), Revue Modulad, 35, 220-363, available at: https://www.rocq.inria.fr/axis/modulad/numero-35/Tutoriel-confais-35/confais-35. pdf (last access: 12 June 2012), 2006.
Dacharry, M.: Dictionnaire français d'hydrologie, available at: http://webworld.unesco.org/water/ihp/db/glossary/glu/indexdic.htm, (last access: 22 February 2012), 1997.
Dagńelie, P.: Statistique th́eorique et appliqúee. Tome 2. Inf́erence statistique ̀a une et ̀a deux dimensions, Bruxelles, De Boeck, 736 pp., 2006.
Demarcin, P., Sohier, C., Mokadem, A. I., Dautrebande, S., and Degŕe, A.: Essai de cartographie des classes d'infiltrabilit́e des sols de Wallonie (Belgique), Biotechnol. Agron. Soc., 15, 119-128, 2011.
deWit, M. J. M., van den Hurk, B.,Warmerdam, P. M. M., Torfs, P. J. J. F., Roulin, E., and van Deursen, W. P. A.: Impact of climate change on low-flows in the River Meuse, Climatic Change, 82, 351-372, 2007. (Pubitemid 46613509)
El Adlouni, S., Bob́ee, B., and Ouarda, T. B. M. J.: On the tails of extreme event distributions in hydrology, J. Hydrol., 355, 16-33, 2008.
Gaĺea, G., Mercier, G., and Adler, M. J.: Mod̀ele d́ebit-duŕeefr ́equence d'́etiage, concept et usage pour une approche ŕegionale des ŕegimes des basses eaux des bassins hydrographiques de la Loire (France) et du Crisu-Alb (Roumanie), J. Water Sci., 12, 93-122, 1999. (Pubitemid 29417147)
Hayes, D. C.: Low-flow characteristics of streams in Virginia, US Geol. Surv., Water-Supply Paper 2374, 69 pp., 1991.
H́ebert, C., El-Jabi, N., and Caissie, D.: Low flow estimation for New Brunswick Rivers, Can. Tech. Rep. Fish. Aquat. Sci., 2493, 24 pp., 2003.
Joseph, E. S.: Probability distribution of annual droughts, J. Irrig. Drain. Div.-ASCE, 96, 461-474, 1970.
Kim, S. U. and Lee, K. S.: Regional low flow frequency analysis using bayesian regression and prediction at ungauged catchment in Korea, KSCE J. Civ. Eng., 14, 87-98, 2010.
Laaha, G. and Bl̈oschl, G.: Low flow estimates from short stream flow records-a comparison of methods, J. Hydrol., 306, 264-286, 2005. (Pubitemid 40678752)
Laaha, G. and Bl̈oschl, G.: A comparison of low flow regionalisation methods-catchment grouping, J. Hydrol., 323, 193-214, 2006. (Pubitemid 43728887)
Laaha, G. and Bl̈oschl, G.: A national low flow estimation procedure for Austria, Hydrolog. Sci. J., 52, 625-644, 2007. (Pubitemid 47241719)
Landwehr, J. M., Matalas, N. C., and Wallis, J. R.: Probability weighted moments compared with some traditional techniques in estimating Gumbel parameters and quantiles, Water Resour. Res., 15, 1055-1064, 1979. (Pubitemid 10255845)
Lang, C. and Gille, E.: Une ḿethode d'analyse du tarissement des cours d'eau pour la pŕevision des d́ebits d'́etiage, Norois, 201, 31-43, available at: http://norois.revues.org/1743 (last access: 17 December 2012), 2006.
Lepp̈aj̈arvi, R.: Frequency analysis of flood and low flow, IAHSAISH P., 187, 435-442, 1989.
Mallows, C. L.: More comments on Cp, Technometrics, 37, 362-372, 1995.
Matalas, N. C.: Probability distribution of low flows, US Geol. Surv., Professional Paper 434-A, 27 pp., 1963.
Middelkoop, H., Daamen, K., Gellens, D., Grabs, W., Kwadijk, J. C. J., Lang, H., Parmet, B. W. A. H., Scḧadler, B., Schulla, J., andWilke, K.: Impact of climate change on hydrological regimes and water resources management in the Rhine basin, Climatic Change, 49, 105-128, 2001. (Pubitemid 32382697)
Miquel, J.: Guide pratique d'estimation des probabilit́es de crues, Eyrolles, Paris, France, 160 pp., 1984.
Modarres, R.: Regional frequency distribution type of low flow in North of Iran by L-moments, Water Resour. Manag., 22, 823-841, 2008. (Pubitemid 351772801)
Nathan, R. J. and McMahon, T. A.: Practical aspects of low-flow frequency analysis, Water Resour. Res., 26, 2135-2141, 1990.
Nathan, R. J. and McMahon, T. A.: Estimating low flow characteristics in ungauged catchments, Water Resour. Manag., 6, 85-100, 1992. (Pubitemid 23374178)
Ouarda, T. B. M. J. and Shu, C.: Regional low-flow frequency analysis using single and ensemble artificial neural networks, Water Resour. Res., 45, 1-16, 2009.
Pacheco, A., Gottschalk, L., and Krasovskaia, I.: Regionalization of low flow in Costa Rica, in: Proceedings of the Fifth FRIEND World Conference, Climate Variability and Change-Hydrological Impacts, Havana, Cuba, November 2006, IAHS-AISH P., 308, 111-116, 2006. (Pubitemid 44925652)
Saravi, M. M., Abasizadeh, M., Malekian, A., and Samani, A. A. N.: The relationship between morphoclimatic characteristics and peak flows: A case study of the southern Alborz Basins, Iran, Prog. Phys. Geogr., 34, 173-182, 2010.
Schwarz, G.: Estimating the dimension of a model, The Annals of Statistics, 6, 461-464, 1978.
Smakhtin, V. U.: Low flow hydrology: a review, J. Hydrol., 240, 147-186, 2001. (Pubitemid 32108798)
Sohier, C., Degŕe, A., and Dautrebande, S.: From root zone modelling to regional forecasting of nitrate concentration in recharge flows-The case of the Walloon Region (Belgium), J. Hydrol., 369, 350-359, 2009.
Tallaksen, L. M.: A review of baseflow recession analysis, J. Hydrol., 165, 349-370, 1995.
Tasker, G. D.: A comparison of methods for estimating low flow characteristics of streams, Water Resour. Bull., 23, 1077-1083, 1987.
Tsakiris, G., Nalbantis, I., and Cavadias, G.: Regionalization of low flows based on Canonical Correlation Analysis, Adv. Water Resour., 34, 865-872, 2011.
van der Wateren-de Hoog, B.: A regional model to assess the hydrological sensitivity of medium size catchments to climate variability, Hydrol. Process., 12, 43-56, 1998.
Vezza, P., Comoglio, C., Rosso, M., and Viglione, A.: Low flows regionalization in North-Western Italy, Water Resour. Manag., 24, 4049-4074, 2010.
Vogel, R. M. and Kroll, C. N.: Low-flow frequency analysis using probability-plot correlation coefficients, J.Water Res. Pl.-ASCE, 115, 338-357, 1989. (Pubitemid 19154439)
Vogel, R. M. and Kroll, C. N.: Regional geohydrologic-geomorpic relationships for the estimation of low-flow statistics, Water Resour. Res., 28, 2451-2458, 1992. (Pubitemid 23376340)
Ward, J. H.: Hierarchical grouping to optimise an objective function, J. Am. Stat. Assoc., 58, 236-244, 1963.
Whitehead, P. G., Wilby, R. L., Battarbee, R. W., Kernan, M., and Wade, A. J.: A review of the potential impacts of climate change on surface water quality, Hydrolog. Sci. J., 54, 101-121, 2009.
Xanthoulis, D.: Mod́elisation math́ematique des d́ebits d'́etiage des cours d'eau: Application au bassin versant de la Lesse, Ph.D. thesis, Universit́e de Lìege-Gembloux Agro-Bio Tech, Belgium, 188 pp., 1985.
Yue, S. and Pilon, P.: Probability distribution type of Canadian annual minimum streamflow, Hydrolog. Sci. J., 50, 427-438, 2005. (Pubitemid 40865142)
Similar publications
Sorry the service is unavailable at the moment. Please try again later.
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.