[en] Poly(lactide) (PLA), a biodegradable aliphatic polyester with excellent properties for different polymer applications, has been used mostly in the biomedical field, mainly because of its high price, resulting from expensive polymerization and purification techniques. Although this polymer can play a major role in future markets for biodegradable polymers, the current high price has to be reduced significantly to at least $4 US/kg. Therefore, this paper aims to partially review the polymerization techniques traditionally used in PLA synthesis and to propose new developments that enable us to produce these polymers by an innovative process for just a portion of the costs traditionally charged, using reactive extrusion techniques in a closely intermeshing co-rotating twin screw extruder. This paper gives an overview of attainable mechanical properties and future markets.
Research Center/Unit :
Center for Education and Research on Macromolecules (CERM)
Disciplines :
Materials science & engineering Chemistry
Author, co-author :
Jacobsen, Sven; University of Stuttgart, Insititut für Kunststofftechnologie, Germany
Degée, Philippe; Université de Liège - ULiège > Department of Chemistry > Center for Education and Research on Macromolecules (CERM)
Fritz, Hans-Gerhard; University of Stuttgart, Insititut für Kunststofftechnologie, Germany
Dubois, Philippe ; Université de Liège - ULiège > Department of Chemistry > Center for Education and Research on Macromolecules (CERM)
Jérôme, Robert ; Université de Liège - ULiège > Department of Chemistry > Center for Education and Research on Macromolecules (CERM)
H. R. Kricheldorf and I. Kreiser-Saunders, Macromol. Symp., 103, 85 (1996).
R. G. Sinclair, Proceedings of the first annual corn utilisation conference (June 1987).
R. G. Sinclair, J. M. S. -Pure Appl. Chem., A33(5) 585 (1996).
R. Datta, S.-P. Tsai, P. Bonsignore, S. H. Moon, and J. R. Frank, FEMS Microbiological Reviews, 16, 221 (1995).
H.-G. Fritz, T. Seidenstücker, U. Bölz, M. Juza, J. Schroeter, and H.-J. Endres, Study on Production of thermoplastics and fibres based mainly on biological materials, EUR 16102 EN, Study of the European Commission (1994).
R. Miyoshi, N. Hashimoto, K. Koyanagi, Y. Sumihiro, and T. Sakai, Intern. Polymer Processing XI, 4, 320 (1996).
M. Ajioka, K. Enomoto, K. Suzuki, and A. Yamaguchi, Bull. Chem. Soc. Jpn., 68, 2125 (1995).
R. D. Lundberg and E. F. Cox, in Ring-Opening Polymerisation, 6, 266, K. C. Frisch and S. L. Reegen, eds., Marcel Dekker, New York, London (1969).
H. R. Kricheldorf and I. Kreiser-Saunders, Macromol. Symp., 32, 285 (1990).
C. Marega, A. Marigo, V. Di Noto, and R. Zannetti, Makromol. Chem., 193 (7), 1599 (1992).
W. Hoogsteen, A. R. Postema, A. J. Pennings, and G. ten Brinke, Macromolecules, 23, 634 (1990).
C. A. P. Joziasse, H. Veenstra, D. W. Grijpma, and A. J. Pennings, Macromol. Chem. Phys., 197, 2219 (1996).
H. Tsuji and Y. Ikada, J. Appl. Polym. Sci., 80, 2367 (1996).
M. Sheth, V. Dave, R. A. Gross, and S. P. McCarthy, ANTEC '95, 1829 (1995).
C. E. Rehberg, M. B. Dixon, T. J. Dietz, and C. H. Fisher, Industrial and Engineering Chemistry, July 1950, p. 1409.
S. Jacobsen and H. G. Fritz, Polym. Eng. Sci., 36, 2799 (1996).
L. V. Labreque, R. A. Kumar, V. Dave, R. A. Gross, and S. P. McCarthy, J. Appl. Polym. Sci., 66, 1507 (1997).
D. W. Grijpma and A. J. Pennings, Macromol. Chem. Phys., 195, 1633 (1994).
A. Lofgren, A.-C. Albertsson, Ph. Dubois, and R. Jérôme, J. Macromol. Sci., Rev., Macromol. Chem. Phys., C35(3), 379 (1995).
H. G. Fritz, S. Jacobsen, R. Jérôme, Ph. Dubois, and Ph. Degee, German patent application, 196 28 472.4 (1996).