[en] Polylactides (PLA), biodegradable aliphatic polyesters, produced from renewable resources might substitute petrochemically based polymers in a broad range of applications in the near future, if we manage to produce them at lower cost and higher efficiency than nowadays. Possible applications include food packaging for meat and soft drinks, films for agro-industry and non-wovens in hygienic products. The authors developed, based on a new catalytic system, a reactive extrusion polymerisation process, which can be used to produce PLA continuously in larger quantities and at lower costs than before. This extrusion polymerisation process has been developed and tested with laboratory scale machines and has to be transferred to industrial processing equipment. This paper aims to address the problems attached with this transfer and to discuss the chances to finally achieve low cost PLA at industrial scale.
Research Center/Unit :
Center for Education and Research on Macromolecules (CERM)
Disciplines :
Materials science & engineering Chemistry
Author, co-author :
Jacobsen, Sven; University of Stuttgart, Insititut für Kunststofftechnologie, Germany
Fritz, Hans-Gerhard; University of Stuttgart, Insititut für Kunststofftechnologie, Germany
Degée, Philippe; University of Mons-Hainaut (UMH) > Laboratory of Polymeric and Composite Materials (SMPC)
Dubois, Philippe ; University of Mons-Hainaut (UMH) > Laboratory of Polymeric and Composite Materials (SMPC)
Jérôme, Robert ; Université de Liège - ULiège > Department of Chemistry > Center for Education and Research on Macromolecules (CERM)
Language :
English
Title :
Continuous reactive extrusion polymerization of L-lactide - an engineering view
Gilding, D.K., (1982), 2, p. 9. , 'Biocompatibility of Clinic Implant Materials', D.F. Williams, Ed., CRS Press, Boca Raton
Conn, J., Oyasu, R., Welsh, M., Beal, J.M., (1974) Amer. J. Surg., 128, p. 19
Schmitt, E.E., Polistina, R.A., (1967), US Pat. 3,297,033
Heller, J., (1985) CRC Crit. Rev. Ther. Drug Carrier Syst., 1, p. 39
Narayan, R., Biomass (Renewable) resources for production of materials, chemicals and fuels - A paradigm shift (1992), p. 1. , Emerging Technologies for Materials and Chemicals from Biomass, ACS Symp. Ser. 476, R.M. Rowell, T.P. Schultz and R. Narayan, Eds
Sinclair, R.G., (1996) J. Macromol. Sci. - Pure Appl. Chem., 33 A, p. 585
Hakola, J.S., Industrial business opportunities for poly(Lactic Acid) biopolymers as a non-food application of agricultural production in Europe' (1997), Renewable Bioproducts-Evaluating the current status in industrial markets and research, EUR 18034 EN
Jacobsen, S., Fritz, H.G., (1996), Ph. Degee, Ph. Dubois and R. Jerome, DE Pat. 196,284,72.4
Gogolewski, S., Janovoic, M., Perren, S.M., Dillon, J.G., Hughes, M.K., (1993) Poly. Degrad. Stab., 40, p. 313
Sodergard, A., Nasman, J.H., (1995) Polym. Degrad Stab., 46, p. 25
Degee, Ph., Dubois, Ph., Jerome, R., Jacobsen, S., Fritz, H.G., J. Polym. Sci., Polym. Chem., , submitted for publication
Degee, Ph., Dubois, Ph., Jerome, R., Jacobsen, S., Fritz, H.G., Macromol. Symp., , submitted for publication
Kowalski, A., Duda, A., Penczek, S., (1998) Macromol. Rapid Commun., 19, pp. 567-572
Lofgren, A., Albertsson, A.C., Dubois, Ph., Jerome, R., (1995) J. Macromol. Sci. - Rev. Macromol. Chem. Phys., 35 C, p. 379
Kricheldorf, H.R., Berl, M., Scharnagl, N., (1988) Macromolecules, 21, p. 286
Jacobsen, S., Fritz, H.G., Degee, Ph., Dubois, Ph., Jerome, R., Polymer, , submitted for publication
Sneller, J.A., (1985) Modern Plastics International, 8, pp. 42-46
Anderlik, R., Herstellung thermoplastischer elastomere auf der basis silanvernetzter polypropylen/ethylen-propylen-elastomer-mischungen (1994), PhD-thesis, IKT, University of Stuttgart
Illing, G., (1969) Modern Plastics, 8, pp. 70-76
Stuber, N.P., Tirrell, M., (1985) Polymer Process Engineering, 3, pp. 71-83
Goyert, W., Grimm, W., Awater, M., thermoplastische Chemiewerkstoffe und Verfahren zu ihrer Herstellung, , Bayer AG, Leverkusen, DE-OS 2854406