self-assembly in bulk; atomic force microscopy (AFM); block copolymer; thermoplastic elastomer
Abstract :
[en] Atomic force microscopy (AFM) is used to study the phase separation process occurring in block copolymers in the solid state. The simultaneous measurement of the amplitude and the phase of the oscillating cantilever in the tapping mode operation provides the surface topography along with the cartography of the microdomains of different mechanical properties. This technique thus allows to characterize the size and shape of those microdomains and their organization at the surface (e.g. cubic lattice spheres, hexagonal lattice of cylinders, or lamellae). In this study, a series of symmetric triblock copolymers made of a inner elastomeric sequence (poly(butadiene) or poly(alkylacrylate)) and two outer thermoplastic sequences (poly(methylmethacrylate)) is analyzed by AFM in the tapping mode. The microphase separation and their morphology are essential factors for the potential of these materials as a new class of thermoplastic elastomers. Special attention is paid to the control of the surface morphology, as observed by AFM, by the molecular structure of the copolymers (volume ratio of the sequences, molecular weight, length of the alkyl side group) and the experimental conditions used for the sample preparation. The molecular structure of the chains is completely controlled by the synthesis, which relies on the sequential living anionic polymerization of the comonomers. The copolymers are analyzed as solvent-cast films, whose characteristics depend on the solvent used and the annealing conditions. The surface arrangement of the phase-separated elastomeric and thermoplastic microdomains observed on the AFM phase images is discussed on the basis of quantitative information provided by the statistical analysis by Fourier transform and grain size distribution calculations.
Research Center/Unit :
Center for Education and Research on Macromolecules (CERM)
Disciplines :
Chemistry Materials science & engineering
Author, co-author :
Rasmont, A.; University of Mons-Hainaut (UMH) > Centre de Recherche en Electronique et Photonique Moléculaires > Service de Chimie des Matériaux Nouveaux
Leclère, Philippe; University of Mons-Hainaut (UMH) > Centre de Recherche en Electronique et Photonique Moléculaires > Service de Chimie des Matériaux Nouveaux
Doneux, C.; University of Mons-Hainaut (UMH) > Centre de Recherche en Electronique et Photonique Moléculaires > Service de Chimie des Matériaux Nouveaux
Lambin, G.; University of Mons-Hainaut (UMH) > Centre de Recherche en Electronique et Photonique Moléculaires > Service de Chimie des Matériaux Nouveaux
Tong, Jiang Dong; Université de Liège - ULiège > Department of Chemistry > Center for Education and Research on Macromolecules (CERM)
Jérôme, Robert ; Université de Liège - ULiège > Department of Chemistry > Center for Education and Research on Macromolecules (CERM)
Brédas, Jean-Luc; University of Mons-Hainaut (UMH) > Centre de Recherche en Electronique et Photonique Moléculaires > Service de Chimie des Matériaux Nouveaux
Lazzaroni, Roberto; University of Mons-Hainaut (UMH) > Centre de Recherche en Electronique et Photonique Moléculaires > Service de Chimie des Matériaux Nouveaux
Language :
English
Title :
Microphase separation at the surface of block copolymers, as studied with atomic force microscopy
BELSPO - SPP Politique scientifique - Service Public Fédéral de Programmation Politique scientifique The European Commission and the Government of the "Région Wallonne " (Project NOMAPOL-Objectif 1-Hainaut) F.R.S.-FNRS - Fonds de la Recherche Scientifique FRIA - Fonds pour la Formation à la Recherche dans l'Industrie et dans l'Agriculture
Commentary :
The authors acknowledge Colloids and Surfaces B-Biointerfaces (Elsevier) for allowing them to archive this paper.
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
1999.
Wiesendanger R. Scanning Probe Microscopy and Spectroscopy: Methods and Applications, Cambridge University Press, Cambridge; 1994.
Magonov S.N., Whangbo M.-H. Surface Analysis with STM and AFM, VCH, Weinheim; 1996.
Noy A., Frisbie C.D., Rozsnyai L.F., Wrighton M.S., Lieber C.M. J. Am. Chem. Soc. 1995, 117:7943.
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.