Gerday, C. and Glansdorff, N. (2007) Physiology and Biochemistry of Extremophiles, ASM Press, Washington, DC.
Horikoshi, K., Antranikian, G., Bull, A. T., Robb, F. T., and Stetter, K. O., Eds. (2011) Extremophiles Handbook, Springer-Verlag, Tokyo.
Takai, K., Nakamura, K., Toki, T., Tsunogai, U., Miyazaki, M., Miyazaki, J., Hirayama, H., Nakagawa, S., Nunoura, T., and Horikoshi, K. (2008) Cell proliferation at 122 C and isotopically heavy CH4 production by a hyperthermophilic methanogen under high-pressure cultivation Proc. Natl. Acad. Sci. U.S.A. 105, 10949-10954
Feller, G. and Gerday, C. (2003) Psychrophilic enzymes: Hot topics in cold adaptation Nat. Rev. Microbiol. 1, 200-208
Margesin, R., Schinner, F., Marx, J. C., and Gerday, C. (2008) Psychrophiles, from Biodiversity to Biotechnology, Springer-Verlag, Berlin.
Rodrigues, D. F. and Tiedje, J. M. (2008) Coping with our cold planet Appl. Environ. Microbiol. 74, 1677-1686
Deming, J. W. (2002) Psychrophiles and polar regions Curr. Opin. Microbiol. 5, 301-309
Siddiqui, K. S. and Cavicchioli, R. (2006) Cold-adapted enzymes Annu. Rev. Biochem. 75, 403-433
Smalas, A. O., Leiros, H. K., Os, V., and Willassen, N. P. (2000) Cold adapted enzymes Biotechnol. Annu. Rev. 6, 1-57
Karshikoff, A. and Ladenstein, R. (2001) Ion pairs and the thermotolerance of proteins from hyperthermophiles: A "traffic rule" for hot roads Trends Biochem. Sci. 26, 550-556
Szilagyi, A. and Zavodszky, P. (2000) Structural differences between mesophilic, moderately thermophilic and extremely thermophilic protein subunits: Results of a comprehensive survey Structure 8, 493-504
Vieille, C. and Zeikus, G. J. (2001) Hyperthermophilic enzymes: Sources, uses, and molecular mechanisms for thermostability Microbiol. Mol. Biol. Rev. 65, 1-43
Luke, K. A., Higgins, C. L., and Wittung-Stafshede, P. (2007) Thermodynamic stability and folding of proteins from hyperthermophilic organisms FEBS J. 274, 4023-4033
Mukaiyama, A. and Takano, K. (2009) Slow unfolding of monomeric proteins from hyperthermophiles with reversible unfolding Int. J. Mol. Sci. 10, 1369-1385
Feller, G., d'Amico, D., and Gerday, C. (1999) Thermodynamic stability of a cold-active α-amylase from the Antarctic bacterium Alteromonas haloplanctis Biochemistry 38, 4613-4619
Hartl, F. U. and Hayer-Hartl, M. (2009) Converging concepts of protein folding in vitro and in vivo Nat. Struct. Mol. Biol. 16, 574-581
Martinez-Hackert, E. and Hendrickson, W. A. (2009) Promiscuous substrate recognition in folding and assembly activities of the trigger factor chaperone Cell 138, 923-934
Merz, F., Boehringer, D., Schaffitzel, C., Preissler, S., Hoffmann, A., Maier, T., Rutkowska, A., Lozza, J., Ban, N., Bukau, B., and Deuerling, E. (2008) Molecular mechanism and structure of Trigger Factor bound to the translating ribosome EMBO J. 27, 1622-1632
Piette, F., D'Amico, S., Struvay, C., Mazzucchelli, G., Renaut, J., Tutino, M. L., Danchin, A., Leprince, P., and Feller, G. (2010) Proteomics of life at low temperatures: Trigger factor is the primary chaperone in the Antarctic bacterium Pseudoalteromonas haloplanktis TAC125 Mol. Microbiol. 76, 120-132
D'Amico, S. and Feller, G. (2009) A nondetergent sulfobetaine improves protein unfolding reversibility in microcalorimetric studies Anal. Biochem. 385, 389-391
Nozaki, Y. (1972) The preparation of guanidine hydrochloride Methods Enzymol. 26, 43-50
Santoro, M. M. and Bolen, D. W. (1988) Unfolding free energy changes determined by the linear extrapolation method. 1. Unfolding of phenylmethanesulfonyl α-chymotrypsin using different denaturants Biochemistry 27, 8063-8068
Pace, C. N. (1990) Measuring and increasing protein stability Trends Biotechnol. 8, 93-98
Vandenameele, J., Lejeune, A., Di Paolo, A., Brans, A., Frere, J. M., Schmid, F. X., and Matagne, A. (2010) Folding of class A β-lactamases is rate-limited by peptide bond isomerization and occurs via parallel pathways Biochemistry 49, 4264-4275
Barrick, D. and Baldwin, R. L. (1993) Three-state analysis of sperm whale apomyoglobin folding Biochemistry 32, 3790-3796
Matthews, C. R. and Crisanti, M. M. (1981) Urea-induced unfolding of the α subunit of tryptophan synthase: Evidence for a multistate process Biochemistry 20, 784-792
Nishikori, S., Shiraki, K., Fujiwara, S., Imanaka, T., and Takagi, M. (2005) Unfolding mechanism of a hyperthermophilic protein O(6)-methylguanine-DNA methyltransferase Biophys. Chem. 116, 97-104
Soulages, J. L. (1998) Chemical denaturation: Potential impact of undetected intermediates in the free energy of unfolding and m-values obtained from a two-state assumption Biophys. J. 75, 484-492
Fersht, A. R. (1999) Structure and Mechanism in Protein Science: A Guide to Enzyme Catalysis and Protein Folding, W. H. Freeman and Co., New York.
Khorasanizadeh, S., Peters, I. D., and Roder, H. (1996) Evidence for a three-state model of protein folding from kinetic analysis of ubiquitin variants with altered core residues Nat. Struct. Biol. 3, 193-205
Privalov, G. P. and Privalov, P. L. (2000) Problems and prospects in microcalorimetry of biological macromolecules Methods Enzymol. 323, 31-62
Knapp, S., Karshikoff, A., Berndt, K. D., Christova, P., Atanasov, B., and Ladenstein, R. (1996) Thermal unfolding of the DNA-binding protein Sso7d from the hyperthermophile Sulfolobus solfataricus J. Mol. Biol. 264, 1132-1144
Novokhatny, V. and Ingham, K. (1997) Thermodynamics of maltose binding protein unfolding Protein Sci. 6, 141-146
Privalov, P. L. (1990) Cold denaturation of proteins Crit. Rev. Biochem. Mol. Biol. 25, 281-305
McCrary, B. S., Edmondson, S. P., and Shriver, J. W. (1996) Hyperthermophile protein folding thermodynamics: Differential scanning calorimetry and chemical denaturation of Sac7d J. Mol. Biol. 264, 784-805
Robic, S., Guzman-Casado, M., Sanchez-Ruiz, J. M., and Marqusee, S. (2003) Role of residual structure in the unfolded state of a thermophilic protein Proc. Natl. Acad. Sci. U.S.A. 100, 11345-11349
Wallgren, M., Aden, J., Pylypenko, O., Mikaelsson, T., Johansson, L. B., Rak, A., and Wolf-Watz, M. (2008) Extreme temperature tolerance of a hyperthermophilic protein coupled to residual structure in the unfolded state J. Mol. Biol. 379, 845-858
Privalov, P. L. and Dragan, A. I. (2007) Microcalorimetry of biological macromolecules Biophys. Chem. 126, 16-24
Liu, C. P., Li, Z. Y., Huang, G. C., Perrett, S., and Zhou, J. M. (2005) Two distinct intermediates of trigger factor are populated during guanidine denaturation Biochimie 87, 1023-1031
Okada, J., Okamoto, T., Mukaiyama, A., Tadokoro, T., You, D. J., Chon, H., Koga, Y., Takano, K., and Kanaya, S. (2010) Evolution and thermodynamics of the slow unfolding of hyperstable monomeric proteins BMC Evol. Biol. 10, 207
Perl, D., Welker, C., Schindler, T., Schroder, K., Marahiel, M. A., Jaenicke, R., and Schmid, F. X. (1998) Conservation of rapid two-state folding in mesophilic, thermophilic and hyperthermophilic cold shock proteins Nat. Struct. Biol. 5, 229-235
Cipolla, A., D'Amico, S., Barumandzadeh, R., Matagne, A., and Feller, G. (2011) Stepwise adaptations to low temperature as revealed by multiple mutants of psychrophilic α-amylase from Antarctic bacterium J. Biol. Chem. 286, 38348-38355
Bae, E. and Phillips, G. N., Jr. (2004) Structures and analysis of highly homologous psychrophilic, mesophilic, and thermophilic adenylate kinases J. Biol. Chem. 279, 28202-28208
Bell, G. S., Russell, R. J., Connaris, H., Hough, D. W., Danson, M. J., and Taylor, G. L. (2002) Stepwise adaptations of citrate synthase to survival at life's extremes. From psychrophile to hyperthermophile Eur. J. Biochem. 269, 6250-6260
Linden, A. and Wilmanns, M. (2004) Adaptation of class-13 α-amylases to diverse living conditions ChemBioChem 5, 231-239
Zheng, B., Yang, W., Zhao, X., Wang, Y., Lou, Z., Rao, Z., and Feng, Y. (2012) Crystal structure of hyperthermophilic endo-β-1,4-glucanase: Implications for catalytic mechanism and thermostability J. Biol. Chem. 287, 8336-8346
Kumar, S. and Nussinov, R. (2004) Experiment-guided thermodynamic simulations on reversible two-state proteins: Implications for protein thermostability Biophys. Chem. 111, 235-246
Kumar, S., Tsai, C. J., and Nussinov, R. (2002) Maximal stabilities of reversible two-state proteins Biochemistry 41, 5359-5374
Rees, D. C. and Robertson, A. D. (2001) Some thermodynamic implications for the thermostability of proteins Protein Sci. 10, 1187-1194
Makhatadze, G. I. and Privalov, P. L. (1995) Energetics of protein structure Adv. Protein Chem. 47, 307-425
Privalov, P. (1992) Physical basis of the stability of the folded conformations of proteins. In Protein Folding (Creighton, T., Ed.) pp 83-126, W. H. Freeman and Co., New York.
Baldwin, A. J. and Kay, L. E. (2009) NMR spectroscopy brings invisible protein states into focus Nat. Chem. Biol. 5, 808-814
Zavodszky, P., Kardos, J., Svingor, A., and Petsko, G. A. (1998) Adjustment of conformational flexibility is a key event in the thermal adaptation of proteins Proc. Natl. Acad. Sci. U.S.A. 95, 7406-7411