A root chicory MADS-box sequence and the Arabidopsis flowering repressor FLC share common features that suggest conserved function in vernalization and devernalization responses
[en] Root chicory (Cichorium intybus var. sativum) is a biennial crop, but is harvested for root inulin at the end of the first growing season before flowering. However, cold temperatures might vernalize seeds or plantlets, leading to incidental early flowering and hence understanding the molecular basis of vernalization is important. A MADS-box sequence was isolated by RT-PCR and named FLC-LIKE1 (CiFL1) because of its phylogenetic positioning within the same clade as the floral repressor Arabidopsis FLOWERING LOCUS C (AtFLC). Moreover, overexpression of CiFL1 in Arabidopsis caused late flowering and prevented up-regulation of the AtFLC target FLOWERING LOCUS T gene by photoperiod, suggesting functional conservation between root chicory and Arabidopsis. Like AtFLC in Arabidopsis, CiFL1 was repressed during vernalization of seeds or plantlets of chicory, but repression of CiFL1 was unstable whether the post-vernalization temperature was favorable to flowering or whether it devernalized the plants. Instability of CiFL1 repression might be linked to bienniality of root chicory versus the annual life cycle of Arabidopsis. However, reactivation of AtFLC was also observed in Arabidopsis when a high temperature treatment was given straight after seed vernalization, erasing the promotive effect of cold on flowering. Cold-induced downregulation of a MADS-box floral repressor and its reactivation by high temperature thus appear as conserved features of the vernalization and devernalization responses in distant species.This article is protected by copyright. All rights reserved.
Périlleux, Claire ✱; Université de Liège - ULiège > Département des sciences de la vie > Physiologie végétale
Pieltain, Alexandra ✱; Université de Liège - ULiège > Département des sciences de la vie > Physiologie végétale
Jacquemin, Guillaume; Université Catholique de Louvain - UCL > Groupe de recherche en Physiologie végétale
Bouché, Frédéric ; Université de Liège - ULiège > Département des sciences de la vie > Physiologie végétale
Detry, Nathalie ; Université de Liège - ULiège > Département des sciences de la vie > Physiologie végétale
D'Aloia, Maria ; Université de Liège - ULiège > Département des sciences de la vie > Physiologie végétale
Thiry, Laura
Aljochim, Pierre
Delansnay, Martin
Mathieu, Anne-Sophie; Université Catholique de Louvain - UCL > Groupe de recherche en Physiologie végétale
Lutts, Stanley; Université Catholique de Louvain - UCL > Groupe de recherche en Physiologie végétale
Tocquin, Pierre ; Université de Liège - ULiège > Département des sciences de la vie > Physiologie végétale
✱ These authors have contributed equally to this work.
Language :
English
Title :
A root chicory MADS-box sequence and the Arabidopsis flowering repressor FLC share common features that suggest conserved function in vernalization and devernalization responses
Service public de Wallonie : Direction générale opérationnelle de l'économie, de l'emploi et de la recherche - DG06 Chicoline, a division of Cosucra Groupe Warcoing
Aikawa, S., Kobayashi, M.J., Satake, A., Shimizu, K.K., and, Kudoh, H., (2010) Robust control of the seasonal expression of the Arabidopsis FLC gene in a fluctuating environment. Proc. Natl Acad. Sci. USA, 107, 11632-11637.
Alexandre, C.M., and, Hennig, L., (2008) FLC or not FLC: the other side of vernalization. J. Exp. Bot. 59, 1127-1135.
Altschul, S.F., Madden, T.L., Schaffer, A.A., Zhang, J., Zhang, Z., Miller, W., and, Lipman, D.J., (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 25, 3389-3402.
Angel, A., Song, J., Dean, C., and, Howard, M., (2011) A Polycomb-based switch underlying quantitative epigenetic memory. Nature, 476, 105-108.
Becker, A., and, Theissen, G., (2003) The major clades of MADS-box genes and their role in the development and evolution of flowering plants. Mol. Phylogenet. Evol. 29, 464-489.
Bernier, G., Kinet, J.-M., and, Sachs, R.M., (1981) The Physiology of Flowering, vol. 1. Boca Raton, FL: CRC Press.
Chouard, P., (1960) Vernalization and its relations to dormancy. Annu. Rev. Plant Physiol. 11, 191-238.
Clough, S.J., and, Bent, A.F., (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J. 16, 735-743.
Crooks, G.E., Hon, G., Chandonia, J.M., and, Brenner, S.E., (2004) WebLogo: a sequence logo generator. Genome Res. 14, 1188-1190.
D'Aloia, M., Tocquin, P., and, Périlleux, C., (2008) Vernalization-induced repression of FLOWERING LOCUS C stimulates flowering in Sinapis alba and enhances plant responsiveness to photoperiod. New Phytol. 178, 755-765.
Demeulemeester, M.A.C., and, De Proft, M.P., (1999) In vivo and in vitro flowering response of chicory (Cichorium intybus L.): influence of plant age and vernalization. Plant Cell Rep. 18, 781-785.
Dennis, E.S., and, Peacock, W.J., (2009) Vernalization in cereals. J. Biol. 8, 57.
Dielen, V., Notté, C., Lutts, S., Debavelaere, V., Van Herck, J.-C., and, Kinet, J.-M., (2005) Bolting control by low temperature in root chicory (Cichorium intybus var. sativum). Field Crops Res. 94, 76-85.
Felsenstein, J., (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution, 39, 783-791.
Finnegan, E.J., and, Dennis, E.S., (2007) Vernalization-induced trimethylation of histone H3 lysine 27 at FLC is not maintained in mitotically quiescent cells. Curr. Biol. 17, 1978-1983.
Gazzani, S., Gendall, A.R., Lister, C., and, Dean, C., (2003) Analysis of the molecular basis of flowering time variation in Arabidopsis accessions. Plant Physiol. 132, 1107-1114.
Gendall, A.R., Levy, Y.Y., Wilson, A., and, Dean, C., (2001) The VERNALIZATION 2 gene mediates the epigenetic regulation of vernalization in Arabidopsis. Cell, 107, 525-535.
Gianquinto, G., (1997) Morphological and physiological aspects of phase transition in radicchio (Cichorium intybus L. var. silvestre Bisch.): influence of daylength and its interaction with low temperature. Sci. Hortic. 71, 13-26.
Gianquinto, G., and, Pimpini, F., (1995) Morphological and physiological aspects of phase transition in radiccio (Cichorium intybus L. var. sylvestre Bischoff): the influence of temperature. Adv. Hortic. Sci. 9, 192-199.
Gouy, M., Guindon, S., and, Gascuel, O., (2010) SeaView version 4: a multiplatform graphical user interface for sequence alignment and phylogenetic tree building. Mol. Biol. Evol. 27, 221-224.
Guindon, S., and, Gascuel, O., (2003) A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst. Biol. 52, 696-704.
Guo, Y.L., Todesco, M., Hagmann, J., Das, S., and, Weigel, D., (2012) Independent FLC mutations as causes of flowering time variation in Arabidopsis thaliana and Capsella rubella. Genetics, 192, 729-739.
Hajdukiewicz, P., Svab, Z., and, Maliga, P., (1994) The small, versatile pPZP family of Agrobacterium binary vectors for plant transformation. Plant Mol. Biol. 25, 989-994.
Helliwell, C.A., Wood, C.C., Robertson, M., James Peacock, W., and, Dennis, E.S., (2006) The Arabidopsis FLC protein interacts directly in vivo with SOC1 and FT chromatin and is part of a high-molecular-weight protein complex. Plant J. 46, 183-192.
Ietswaart, R., Wu, Z., and, Dean, C., (2012) Flowering time control: another window to the connection between antisense RNA and chromatin. Trends Genet. 28, 445-453.
Johanson, U., West, J., Lister, C., Michaels, S., Amasino, R., and, Dean, C., (2000) Molecular analysis of FRIGIDA, a major determinant of natural variation in Arabidopsis flowering time. Science, 290, 344-347.
Joseph, C., Billot, J., Soudain, P., and, Côme, P., (1985) The effect of cold, anoxia and ethylene on the flowering ability of buds of Cichorium intybus. Physiol. Plant. 65, 146-150.
Kaufmann, K., Melzer, R., and, Theissen, G., (2005) MIKC-type MADS-domain proteins: structural modularity, protein interactions and network evolution in land plants. Gene, 347, 183-198.
Lanave, C., Preparata, G., Saccone, C., and, Serio, G., (1984) A new method for calculating evolutionary substitution rates. J. Mol. Evol. 20, 86-93.
Le, S.Q., and, Gascuel, O., (2008) An improved general amino acid replacement matrix. Mol. Biol. Evol. 25, 1307-1320.
Lee, I., and, Amasino, R.M., (1995) Effect of vernalization, photoperiod, and light quality on the flowering phenotype of Arabidopsis plants containing the FRIGIDA gene. Plant Physiol. 108, 157-162.
Lin, S.I., Wang, J.G., Poon, S.Y., Su, C.L., Wang, S.S., and, Chiou, T.J., (2005) Differential regulation of FLOWERING LOCUS C expression by vernalization in cabbage and Arabidopsis. Plant Physiol. 137, 1037-1048.
Liu, J., He, Y., Amasino, R., and, Chen, X., (2004) siRNAs targeting an intronic transposon in the regulation of natural flowering behavior in Arabidopsis. Genes Dev. 18, 2873-2878.
Locascio, A., Lucchin, M., and, Varotto, S., (2009) Characterization of a MADS FLOWERING LOCUS C-LIKE (MFL) sequence in Cichorium intybus: a comparative study of CiMFL and AtFLC reveals homologies and divergences in gene function. New Phytol. 182, 630-643.
Michaels, S.D., and, Amasino, R.M., (1999) FLOWERING LOCUS C encodes a novel MADS domain protein that acts as a repressor of flowering. Plant Cell, 11, 949-956.
Michaels, S.D., and, Amasino, R.M., (2001) Loss of FLOWERING LOCUS C activity eliminates the late-flowering phenotype of FRIGIDA and autonomous pathway mutations but not responsiveness to vernalization. Plant Cell, 13, 935-941.
Michaels, S.D., He, Y., Scortecci, K.C., and, Amasino, R.M., (2003) Attenuation of FLOWERING LOCUS C activity as a mechanism for the evolution of summer-annual flowering behavior in Arabidopsis. Proc. Natl Acad. Sci. USA, 100, 10102-10107.
Napp-Zin, K., (1957) Untersuchungen über das vernalisations- verhalten einer winterannuellen rassen von Arabidopsis thaliana. Planta, 50, 177-210.
Paulet, P., (1985) Cichorium intybus and C. endivia. In Handbook of Flowering (, Halevy, A.H., ed.). Boca Raton, FL: CRC Press, pp. 265-271.
Pimpini, F., and, Gianquinto, G., (1988) The influence of climatic conditions and age of plant at transplanting on bolting and yield of chicory (Cichorium intybus L.) cv. Rosso di Chioggia grown for early production. Acta Hortic. 229, 379-386.
Pin, P.A., Zhang, W., Vogt, S.H., et al,. (2012) The role of a pseudo-response regulator gene in life cycle adaptation and domestication of beet. Curr. Biol., 22, 1095-1101.
Ratcliffe, O.J., Nadzan, G.C., Reuber, T.L., and, Riechmann, J.L., (2001) Regulation of flowering in Arabidopsis by an FLC homologue. Plant Physiol. 126, 122-132.
Reeves, P.A., He, Y., Schmitz, R.J., Amasino, R.M., Panella, L.W., and, Richards, C.M., (2007) Evolutionary conservation of the FLOWERING LOCUS C-mediated vernalization response: evidence from the sugar beet (Beta vulgaris). Genetics, 176, 295-307.
Schranz, M.E., Quijada, P., Sung, S.B., Lukens, L., Amasino, R., and, Osborn, T.C., (2002) Characterization and effects of the replicated flowering time gene FLC in Brassica rapa. Genetics, 162, 1457-1468.
Searle, I., He, Y., Turck, F., Vincent, C., Fornara, F., Krober, S., Amasino, R.A., and, Coupland, G., (2006) The transcription factor FLC confers a flowering response to vernalization by repressing meristem competence and systemic signaling in Arabidopsis. Genes Dev. 20, 898-912.
Sheldon, C.C., Burn, J.E., Perez, P.P., Metzger, J., Edwards, J.A., Peacock, W.J., and, Dennis, E.S., (1999) The FLF MADS box gene: a repressor of flowering in Arabidopsis regulated by vernalization and methylation. Plant Cell, 11, 445-458.
Sheldon, C.C., Rouse, D.T., Finnegan, E.J., Peacock, W.J., and, Dennis, E.S., (2000) The molecular basis of vernalization: the central role of FLOWERING LOCUS C (FLC). Proc. Natl Acad. Sci. USA, 97, 3753-3758.
Sheldon, C.C., Conn, A.B., Dennis, E.S., and, Peacock, W.J., (2002) Different regulatory regions are required for the vernalization-induced repression of FLOWERING LOCUS C and for the epigenetic maintenance of repression. Plant Cell, 14, 2527-2537.
Sievers, F., Wilm, A., Dineen, D., et al,. (2011) Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Mol. Syst. Biol. 7, 539.
Turck, F., Fornara, F., and, Coupland, G., (2008) Regulation and identity of florigen: FLOWERING LOCUS T moves center stage. Annu. Rev. Plant Biol. 59, 573-594.
Van Cutsem, P., du Jardin, P., Boutte, C., Beauwens, T., Jacqmin, S., and, Vekemans, X., (2003) Distinction between cultivated and wild chicory gene pools using AFLP markers. Theor. Appl. Genet. 107, 713-718.
Vandesompele, J., De Preter, K., Pattyn, F., Poppe, B., Van Roy, N., De Paepe, A., and, Speleman, F., (2002) Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol. 3, 0034.1-0034.11.
Vergara, G.V., and, Ismail, A.M., (2008) Total RNA isolation from dry and germinating rice seeds for gene expression studies. Int. Rice Res. Notes, 32, 35-36.
Wang, R., Farrona, S., Vincent, C., Joecker, A., Schoof, H., Turck, F., Alonso-Blanco, C., Coupland, G., and, Albani, M.C., (2009) PEP1 regulates perennial flowering in Arabis alpina. Nature, 459, 423-427.
Yang, Z., (1993) Maximum-likelihood estimation of phylogeny from DNA sequences when substitution rates differ over sites. Mol. Biol. Evol. 10, 1396-1401.