Engineering, computing & technology: Multidisciplinary, general & others
Author, co-author :
Readman, Mark C.; School of Mathematics, The University of Manchester, Manchester, England, United Kingdom
Schliemann, Monica; Department of Electrical Engineering and Computer Science (Institut Montefiore) and GIGA (Interdisciplinary Cluster for Applied Geno-proteomics), Université de Liège, Belgium
Kalamatianos, Dimitrios; Division of Developmental Biology, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
Bullinger, Eric ; Université de Liège - ULiège > Dép. d'électric., électron. et informat. (Inst.Montefiore) > Systèmes et modélisation : Méth. computat. pour la bio.syst.
Language :
English
Title :
A feedback control perspective on models of apoptosis signal transduction
Publication date :
2013
Journal title :
Chaos, Solitons and Fractals
ISSN :
0960-0779
Publisher :
Pergamon Press - An Imprint of Elsevier Science
Peer reviewed :
Peer Reviewed verified by ORBi
Funders :
National Biophotonics and Imaging Platform, Ireland Fondation Francqui Belgian Network DYSCO (Dynamical Systems, Control, and Optimisation)
Kerr, J.F., Wyllie, A.H., Currie, A.R., Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br J Cancer 26:4 (1972), 239–257, 10.1038/bjc.1972.33.
Hardy, K., Stark, J., Mathematical models of the balance between apoptosis and proliferation. Apoptosis 7:4 (2002), 373–381, 10.1023/A:1016183731694.
Eissing, T., Conzelmann, H., Gilles, E.D., Allgöwer, F., Bullinger, E., Scheurich, P., Bistability analyses of a caspase activation model for receptor–induced apoptosis. J Biol Chem 279:35 (2004), 36892–36897, 10.1074/jbc.M404893200.
Rehm, M., Huber, H.J., Dussmann, H., Prehn, J.H., Systems analysis of effector caspase activation and its control by X-linked inhibitor of apoptosis protein. EMBO J 25:18 (2006), 4338–4349, 10.1038/sj.emboj.7601295.
Huber, H., Bullinger, E., Rehm, M., Systems biology approaches to the study of apoptosis., 2nd ed. Yin, X.M., Dong, Z., (eds.) Essentials of Apoptosis, 2009, Humana Press 978-1-60327-380-0, 283–297, 10.1007/978-1-60327-381-7_12.
Albeck, J.G., Burke, J.M., Aldridge, B.B., Zhang, M., Lauffenburger, D.A., Sorger, P.K., Quantitative analysis of pathways controlling extrinsic apoptosis in single cells. Mol Cell 30:1 (2008), 11–25, 10.1016/j.molcel.2008.02.012.
Schliemann, M., Bullinger, E., Borchers, S., Allgöwer, F., Findeisen, R., Scheurich, P., Heterogeneity reduces sensitivity of cell death for TNF-stimuli. BMC Syst Biol, 5(1), 2011, 204, 10.1186/1752-0509-5-204.
Horn, F.J.M., Jackson, R., General mass action kinetics. Arch Ration Mech Anal 47:2 (1972), 81–116, 10.1007/BF00251225.
Feinberg, M., The existence and uniqueness of steady states for a class of chemical reaction networks. Arch Ration Mech Anal 132:4 (1995), 311–370, 10.1007/BF00375614.
Gatermann, K., Huber, B., A family of sparse polynomial systems arising in chemical reaction systems. J Symbolic Comput 33:3 (2002), 275–305, 10.1006/jsco.2001.0512.
Trotta, L., Bullinger, E., Sepulchre, R., Global analysis of dynamical decision-making models through local computation around the hidden saddle. PLoS One, 7(3), 2012, e33110, 10.1371/journal.pone.0033110.
Varga A. Balancing-free square-root algorithm for computing singular perturbation approximations. In: Proceedings of 30th IEEE CDC, 1991, Brighton, UK. p. 1062–65. doi: http://dx.doi.org/10.1109/CDC.1991.261486.
Bristol, E.H., On a new measure of interactions for multivariable process control. IEEE Trans Autom Control 11 (1966), 133–134, 10.1109/TAC.1966.1098266.
Skogestad, S., Postlethwaite, I., Multivariable feedback control: analysis and design. 2005, Wiley 0470011688.
Åström, K.J., Murray, R.M., Feedback systems: an introduction for scientists and engineers. 2008, Princeton University Press 0691135762.
Schliemann M, Findeisen R, Bullinger E. Robustness-based model validation of an apoptosis signalling network model. In: 16th IFAC Symposium on System Identification, 11–13 July, Brussels, Belgium; 2012, p. 930–35. doi: http://dx.doi.org/10.3182/20120711-3-BE-2027.00352.
Legewie, S., Blüthgen, N., Herzel, H., Mathematical modeling identifies inhibitors of apoptosis as mediators of positive feedback and bistability. PLoS Comput Biol, 2(9), 2006, 10.1371/journal.pcbi.0020120.
Ang, J., Ingalls, B., McMillen, D., Probing the input-output behavior of biochemical and genetic systems system identification methods from control theory. Methods Enzymol 487 (2011), 279–317, 10.1016/B978-0-12-381270-4.00010-X.
LeDuc, P.R., Messner, W.C., Wikswo, J.P., How do control-based approaches enter into biology?. Annu Rev Biomed Eng 13 (2011), 369–396, 10.1146/annurev-bioeng-071910-124651.
Hua, R., Zhu, K., Li, Y., Yao, K., Zhang, R., Wang, H., et al. Embelin induces apoptosis through down-regulation of XIAP in human leukemia cells. Med Oncol 28 (2011), 1584–1588, 10.1007/s12032-010-9601-5.
Allensworth, J.L., Aird, K.M., Aldrich, A.J., Batinic-Haberle, I., Devi, G.R., XIAP inhibition and generation of reactive oxygen species enhances TRAIL sensitivity in inflammatory breast cancer cells. Mol Cancer Ther, 11, 2012, 1518, 10.1158/1535-7163.MCT-11-0787.
Zhou, K., Doyle, J., Glover, K., Robust and optimal control. 1995, Prentice Hall 0134565673.
Antoulas, A.C., Approximation of large-scale dynamical systems. 2009, Cambridge University Press 0898716586.