Abstract :
[en] Disulfide bridges play a major role in defining the structural properties of peptides and proteins. However, the determination of the cysteine pairing is still challenging. Peptide sequences are usually achieved using MS/MS spectra of the totally reduced unfolded species but the cysteine pairing information is lost. On the other hand, MS/MS experiments performed on native folded species show complex spectra composed of non-classical ions. MS/MS alone does not allow the cysteine pairing nor the full sequence of an unknown peptide to be determined. The major goal of this work is to set up a strategy for the full structural characterization of peptides including disulfide bridges annotation in the sequence. This
strategy was developed by combining Ion Mobility Spectrometry (IMS)and Collision Induced
Dissociation(CID). It is assumed that the opening of one S-S bridges in a peptide leads to a structural evolution which results in a modification of IMS drift time. In the presence of multiple S-S bridges, the shift in arrival time will depend on which disulfide(s) has (have) been reduced and on the shape adopted by the generated species. Due to specific fragmentations observed for each species, CID experiments performed after the mobility separation could provide not only information on peptide sequence, but also on the localization of the disulfide bridges. To achieve this goal, synthetic peptides containing two disulfides were studied. The openings of the bridges were carried out following different experimental conditions such as reduction, reduction/alkylation or oxidation. Due to disulfide scrambling highlighted with the reduction approaches, oxidation of S-S bonds into cysteic acids appeared to be the best strategy. Cysteines connectivity was then unambiguously determined for the two peptides, without any disulfide scrambling interference.
Scopus citations®
without self-citations
21