Abstract :
[en] In this paper, based on analysis of the chemical and physical processes of clinker formation, a heat flux function was introduced to take account of the thermal effect of clinker formation. Combining the models of gas-solid flow, heat and mass transfer, and pulverized coal combustion, a set of mathematical models for a full-scale cement rotary kiln were established. In terms of commercial CFD code (FLUENT), the distributions of gas velocity, gas temperature, and gas components in a cement rotary kiln were obtained by numerical simulation of a 3000 t/d rotary kiln with a four-channel burner. The predicted results indicated that the improved model accounts for the thermal enthalpy of the clinker formation process and can give more insight (such as fluid flow, temperature, etc,) from within the cement rotary kiln, which is a benefit to better understanding of combustion behavior and an improvement of burner and rotary kiln technology.
Scopus citations®
without self-citations
33