[en] The drying Pseudomonas fluorescens makes more economical storage, transportation and marketing. It aims to stop and to stabilize all biological activities for an optimal storage, compatible with the conservation of maximum viability of microorganisms desired. The viability of bacteria after drying depends on the operating conditions of the latter. One of the most important criteria to consider during the drying of biologically active products is the quality of the final dried product. Freeze-drying is the most drying method used for Pseudomonas. But temperature changes it induced are not without consequence for the cells. They are responsible for cell damage (peroxidation of fatty acids) and genetic (proteins and DNA oxidation). However, use of protective compounds during freeze-drying and during storage increases significantly the rate of cell viability.
Anand R. & Kulothungan S., 2010. Antifungal metabolites of Pseudomonas fluorescens against crown rot pathogen of Arachis hypogaea. Ann. Biol. Res., 1, 199-207.
Anita B. & Samiyappan R., 2012. Induction of systemic resistance in rice by Pseudomonas fluorescens against rice root knot nematode Meloidogyne graminicola. J. Biopesticides, 5, 53-59.
Béal C. et al., 2008. Production et conservation des ferments lactiques et probiotiques. In: Corrieu G. & Luquet F.-M., eds. Bactéries lactiques, de la génétique aux ferments. Paris: Tec & Doc Lavoisier, 661-785.
Beveridge T.J., 1999. Structures of Gram-negative cell walls and their derived membrane vesicles. J. Bacteriol., 181, 4725-4733.
Bhattacharya A., 2010. Siderophore mediated metal uptake by Pseudomonas fluorescens and its comparison to iron (iii) chelation. Ceylon J. Sci. (Biol. Sci.), 39, 147-155.
Castro H.P., Teixeira P.M. & Kirby R., 1995. Storage of lyophilized cultures of Lactobacillus bulgaricus under different relative humidities and atmospheres. Appl. Microbiol. Biotechnol., 44, 172-176.
Charan A.R. et al., 2011. Assessment of genetic diversity in Pseudomonas fluorescens using PCR-based methods. Biorem. Biodivers. Bioavailability, 5, 10-16.
Charde A. & Dawande A.Y., 2010. Purification and characterization of proteinaceous compound from Pseudomonas fluorescens (ATCC 948). Asiatic J. Biotechnol. Resour., 1, 20-22.
Coulibaly I., Dauphin D.R., Destain J. & Thonart P., 2008. Characterization of lactic acid bacteria isolated from poultry farms in Senegal. Afr. J. Biotechnol., 7, 2006-2012.
Coulibaly I., Yao A.A., Lognay G. & Fauconnier M.-L., 2009. Survival of freeze-dried of Leuconostoc mesenteroides and Lactobacillus plantarum related to their cellular fatty acids composition during storage. Appl. Biochem. Biotechnol., 157, 70-84.
Coulibaly I. et al., 2011. Techniques de séchage des starters lactiques et mécanismes affectant la viabilité cellulaire suite à la lyophilisation. Biotechnol. Agron. Soc. Environ., 15, 287-299.
Daigle D.J., Connick W.J. & Boyetcheko S.M., 2002. Formulating a weed-suppressive bacterium in "Pesta". Weed Technol., 16, 407-413.
Demirhan E. & Özbek B., 2010. Drying kinetics and effective moisture diffusivity of purslane undergoing microwave heat treatment. Korean J. Chem. Eng., 27, 1377-1383.
Devanesan M.G., Viruthagiri T. & Sugumar N., 2007. Transesterification of Jatropha oil using immobilized Pseudomonas fluorescens. Afr. J. Biotechnol., 6, 2497-2501.
Gao G. et al., 2012. Effect of biocontrol agent Pseudomonas fluorescens 2P24 on soil fungal community in cucumber rhizosphere using T-RFLP and DGGE. PlosOne, 7, e31806, doi:10.1371/journal.pone.0031806.
Harrison A.P. & Pelczar M.J., 1963. Damage and survival of bacteria during freeze-drying and during storage over a ten-year period. J. Gen. Microbiol., 30, 395-400.
Jha R. & Rizvi S.I., 2011. Carbonyl formation in erythrocyte membrane proteins during aging in humans. Biomed. Pap., 155, 1-4.
Jørgensen F., Nybroe O. & Knøchel S., 1994. Effect of starvation and osmotic stress on viability and heat resistance of Pseudomonas fluorescens AH9. J. Appl. Microbiol., 77, 340-347.
Kawahara H., 2008. Cryoprotectants and ice-binding proteins. In: Margesin R. et al., eds. Psychrophiles: from biodiversity to biotechnology. Berlin, Heidelberg, Germany: Springer-Verlag, 229-243.
Leslie S.B. et al., 1995. Trehalose and sucrose protect both membranes and proteins in intact bacteria during drying. Appl. Environ. Microbiol., 61, 3592-3597.
Li J. et al., 2004. Fluidized-bed drying of biological materials: two cases studies. Chin. J. Chem. Eng., 12, 840-842.
Lievense L.C. & van't Riet K., 1993. Convective drying of bacteria. The drying process. Adv. Biochem. Eng. Biotechnol., 50, 45-63.
Lievense L.C. & van't Riet K., 1994. Convective drying of bacteria. Factors influencing survival. Adv. Biochem. Eng. Biotechnol., 51, 71-89.
Louis P., Trüper H.G. & Galinski E.A., 1994. Survival of Escherichia coli during drying and storage in the presence of compatible solutes. Appl. Microbiol. Biotechnol., 41, 684-688.
Luqman S. & Rizvi S.I., 2006. Protection of lipid peroxidation and carbonyl formation in proteins by capsaicin in human erythocytes subjected to oxidative stress. Phytotherapy Res., 20, 303-306.
Mazur P., 1970. The freezing of biological systems. Cryobiology, 168, 939-949.
Miyamoto-Shinohara Y., Sukenobe J., Imaizumi T. & Nakahara T., 2008. Survival of freeze-dried bacteria. J. Gen. Appl. Microbiol., 54, 9-24.
Moneke A.N., Okpala G.N. & Anyanwu C.U., 2010. Biodegradation of glyphosate herbicide in vitro using bacterial isolates from four rice fields. Afr. J. Biotechnol., 9, 4067-4074.
Morgan C.A., Herman N., White P.A. & Vesey G., 2006. Preservation of microorganisms by drying. J. Microbiol. Methods, 66, 183-193.
Mputu K. J.-N. et al., 2012a. Effects of glycerol on Pseudomonas fluorescens BTP1 freeze-dried. Int. J. Biotechnol. Biochem., 8, 245-258.
Mputu K. J.-N. et al., 2012b. Impact of protective compounds on the viability, physiological state and lipid degradation of freeze-dried Pseudomonas fluorescens BTP1 during storage. Int. J. Biotechnol. Biochem., 8, 17-26.
Mputu K. J.-N., 2013. Optimisation of production of Pseudomonas fluorescens. Accelerated study of storage and oxidation test. Saarbrücken, Germany: Lambert Academic Publishing.
Nanasombat S. & Sriwong N., 2007. Improving viability of freeze-dried lactic acid bacteria using lyoprotectants in combination with osmotic and cold adaptation. KMITL Sci. Technol. J., 7, 61-67.
Ongena M. et al., 2005. Isolation of an N-alkylated benzylamine derivative from Pseudomonas putida BTP1 as elicitor of induced systemic resistance in bean. Mol. Plant-Microbe Interact., 18, 562-569.
Palmfeldt J., Radström P. & Hahn-Hägerdal B., 2003. Optimisation of initial cell concentration enhances freeze-drying tolerance of Pseudomonas chlororaphis. Cryobiology, 47, 21-29.
Pembrey R.S., Marshall K.C. & Schneider R.P., 1999. Cell surface analysis techniques: what do cell preparation protocols do to cell surface properties? Appl. Environ. Microbiol., 65, 2877-2894.
Petropoulos I., 2011. Stress oxydant et vieillissement. Module de gérontologie fondamentale. Cours de Biologie cellulaire. Paris: Université Pierre et Marie Curie.
Santivarangkna C., Wenning M., Foerst P. & Kulozik U., 2007. Damage of cell envelope of Lactobacillus helveticus during vacuum drying. J. Appl. Microbiol., 102, 748-756.
Selmer-Olsen E., Birkeland S.-E. & Sorhaug T., 1999. Effect of protective solutes on leakage from and survival of immobilized Lactobacillus subjected to drying, storage and rehydration. J. Appl. Microbiol., 87, 429-437.
Sillankorva S., Neubauer P. & Azeredo J., 2008. Pseudomonas fluorescens biofilms subjected to phage phiIBB-PF7A. BMC Biotechnol., 8, 79-91.
Slininger P.J., Dunlap C.A. & Schisler D.A., 2009. Polysaccharide production benefits dry storage survival of the biocontrol agent Pseudomonas fluorescens S11:P:12 effective against several maladies of stored potatoes. Biocontrol Sci. Technol., 20(3), 227-244.
Stephan D., Bisutti I.L., Matos da Silva A.-P. & Covi J., 2007. Optimisation of the freeze-drying process of Pseudomonas fluorescens strains Pf 153 and CHA0. IOBC WPRS Bull., 30, 511-515.
Suzuki Y.J., Carini M. & Butterfield D.A., 2010. Protein carbonylation. Antioxid. Redox Signaling, 12, 323-325.
Tripathi P. et al., 2012. Towards a nanoscale view of lactic acid bacteria. Micron, 43, 1323-1330.
Trögl J. et al., 2012. Pseudomonas fluorescens HK44: lessons learned from a model whole-cell bioreporter with a broad application history. Sensors, 12, 1544-1571.
Volodymyr I., 2011. Bioagents of environmental and engineering bioprocesses. In: Environmental microbiology for engineers. Boca Raton, FL, USA: CRC Press, 89-98.
Wong W. et al., 2011. Spread of Pseudomonas fluorescens due to contaminated drinking water in a bone marrow transplant unit. J. Clin. Microbiol., 49, 2093-2096.
Yao A.A., Wathelet B. & Thonart P., 2009. Effect of protective compounds on the survival, electrolyte leakage and lipid degradation of freeze-dried Weissella paramesenteroides LC11 during storage. J. Microbiol. Biotechnol., 19, 810-817.
Zamora L.M., Carretero C. & Parés D., 2006. Comparative survival rates of lactic acid bacteria isolated from blood, following spray-drying and freeze-drying. Food Sci. Technol. Int., 12, 77-84.
Zhao G. & Zhang G., 2005. Effect of protective agents, freezing temperature, rehydration media on viability of malolactic bacteria subjected to freeze-drying. J. Appl. Microbiol., 99, 333-338.