Extremely Randomized Trees and Random Subwindows for Image Classification, Annotation, and Retrieval
Marée, Raphaël; Wehenkel, Louis; Geurts, Pierre
2013 • In Criminisi, A; Shotton, J (Eds.) Decision Forests in Computer Vision and Medical Image Analysis, Advances in Computer Vision and Pattern Recognition
extremely randomized trees; random subwindows; machine learning
Abstract :
[en] We present a unified framework involving the extraction of
random subwindows within images and the induction of ensembles of
extremely randomized trees. We discuss the specialization of this
framework for solving several general problems in computer vision,
ranging from image classification and segmentation to content-based
image retrieval and interest point detection. The methods are
illustrated on various applications and datasets from the biomedical
domain
Research Center/Unit :
Giga-Systems Biology and Chemical Biology - ULiège
FEDER - Fonds Européen de Développement Régional Service public de Wallonie : Direction générale opérationnelle de l'économie, de l'emploi et de la recherche - DG06 F.R.S.-FNRS - Fonds de la Recherche Scientifique