[en] The increasing use of radiopharmaceuticals for positron emission tomography (PET) has come to the attention of regulatory bodies. In order to help authorities in all aspects, the EANM has formed a task group for licensing PET radiopharmaceuticals; this group has surveyed the use of these compounds in Europe by a questionnaire. The number of PET centres that responded to the questionnaire was 26, which included more than 90% of the larger European PET centres. The survey showed that 2-[18F]fluoro-2-deoxyglucose is by far the most important PET radiopharmaceutical with more than 200 applications per week, followed by [15O]water, [15O]carbonmonoxide, [13N]ammonia, [11C]-l-methionine, andl-6-[18F]fluoro-DOPA. More than 25 other PET radiopharmaceuticals are in regular use, however, at rather low application frequencies. The data were used by the European Pharmacopoeia Commission for its priority rating for requesting the formulation of monographs. Since it is likely that group registrations will be issued by authorities for the PET radiopharmaceuticals, relevant data on toxicity and dosimetry for the formulation of summaries of product characteristics have been collected by the task group as well.
Disciplines :
Radiology, nuclear medicine & imaging
Author, co-author :
Meyer, G. J.
Waters, S. L.
Coenen, H. H.
Luxen, André ; Université de Liège - ULiège > Département de chimie (sciences) > Chimie organique de synthèse - Centre de recherches du cyclotron
Maziere, B.
Langstrom, B.
Language :
English
Title :
PET radiopharmaceuticals in Europe : Current use and data relevant for the formulation of summaries of product characteristics (SPCs)
Publication date :
1995
Journal title :
European Journal of Nuclear Medicine
ISSN :
0340-6997
eISSN :
1432-105X
Publisher :
Springer, New York, United States - New York
Volume :
22
Issue :
12
Pages :
1420-1432
Peer reviewed :
Peer Reviewed verified by ORBi
Commentary :
The original publication is available at www.springerlink.com/content/l38106n5p3732840/?p=7bffe241e7664598a4b2ec8b94ff925e&pi=0
Som P., Atkins H.L., Bandoypadhyay D. J Nucl Med 1980, 21:670-675.
Reivich M., Kuhl D., Wolf A. (1979) The [18F]-fluorodeoxyglucose method for the measurement of local cerebral glucose metabolism in man. Circ Res 44:127-133.
Bida G.T., Satyamurthy N., Barrio J. (1984) The synthesis of 2-[F-18]Fluoro-2-deoxy- d-glucose using glucals: a reexamination. J Nucl Med 25:1327-1334.
Wienhard K., Pawlik G., Nebeling B. J Cereb Blood Flow Metab 1991, 11:485-491.
.
Baudot P., Jaque M., Robin M. (1977) Effect of a diaza-polyoxa-macrobicyclic complexing agent on the urinary elimination of lead in lead-poisoned rats. Toxicol Appl Pharmacol 41:113-115.
Baumann M., Schäfer E., Grein H. (1984) Short-term studies with the cryptating agent hexaoxa-diaza-bicyclo-hexacosane in rats. Arch Toxicol 55:427-429.
Müller W.H., Beaumatin J. (1976) Distribution of a cryptating agent in excreta and its influence on urinary elimination of Na, K, Mg, Ca, and Zn in the rat. Life Sci 17:1815-1820.
Meyer G-J, Coenen H.H., Waters S.L. (1993) Quality assurance and quality control of short-lived radiopharmaceuticals for PET. Radiopharmaceuticals for positron emission tomography: methodological aspects , G., Stöcklin, V., Pike, Kluwer Academic, Dordrecht Boston London; 91-150.
Hunt R. (1926) Some effects of quarternary ammonium compounds on the autonomic nervous system. J Pharmacol Exp Ther 28:367-388.
Jones S.C., Alavi A., Christman D. (1982) The radiation dosimetry of 2-[F-18]fluoro 2-deoxy- d-glucose. J Nucl Med 23:613-617.
Mejia A.A., Nakamura T., Masatoshi I. (1991) Estimation of absorbed doses in humans due to intravenous administration of fluorine-18-fluorodeoxyglucose in PET studies. J Nucl Med 32:699-706.
Radiation dose to patients from radiopharmaceuticals, ICRP publication 53, Pergamon, Oxford; 1988.
Junker D., Fitschen J. (1988) Spezielle Probleme des Strahlenschutzes. Handbuch der Medizin. Radiologie vol 15/1b , H., Hundeshagen, Springer, Heidelberg Berlin New York; 119-147.
1990 recommendations of the international commission on radiological protection, ICRP publication 60, Pergamon, Oxford; 1991.
Dowd M.T., Chen C-T, Wendel M.J. (1991) Radition dose to the bladder wall from 2-[18F]fluoro-2-deoxy- d-glucose in adult humans. J Nucl Med 32:707-712.
Huda W., Sandison G.A (1990) Estimates of the effective dose equivalent HE, in positron emission tomography studies. Eur J Nucl Med 17:116-120.
Johannsson L., Mattsson S., Nosslin B., Leide-Svegborn S. (1992) Effective dose from radiopharmaceuticals. European Journal of Nuclear Medicine 19:933-938.
.
Kearfott K.J. (1982) Absorbed dose estimates for positron emission tomography (PET): C15O,11CO, CO15O. J Nucl Med 23:1031-1037.
Kearfott K.J., Rottenberg D.A., Volpe B.T. (1983) Design of steady-state PET protocols for neurobehavioural studies: CO15O and19Ne. J Comput Assist Tomogr 7:51-57.
Bigler R.E., Sgouros G. (1983) Biological analysis and dosimetry of15O-labelled O2, CO2, and CO gases administered continuously by inhalation. J Nucl Med 24:431-437.
Smith T., Tong C., Lammertsma A.A. (1994) Dosimetry of intravenously administered oxygen 15 labelled water in man: a model based on experimental human data from 21 subjects. Eur J Nucl Med 21:1126-1134.
Brihaye C., Depresseux J.C., Comar D. (1995) Radiation dosimetry for bolus administration of oxygen-15-water. J Nucl Med 36:651-656.
Lockwood A.H. (1980) Absorbed doses of radiation after an intravenous injection of N-13 ammonia in man: concise communication. J Nucl Med 21:276-278.
Allgemeine und spezielle Pharmakologie und Toxikologie, W., Forth, D., Henschler, W., Rummel, Bibliographisches Institut, Zürich; 1987.
Clark J.C., Crouzel C., Meyer G-J (1987) Current methodology for oxygen-15 production for clinical use. Appl Radiat Isot 38:597-600.
Luxen A., Perlmutter M., Bida G.T. (1990) Remote semiautomated production of 6-[18F]Fluoro- l-DOPA. for human studies with PET. Appl Radiat Isot 41:275-281.
Seiler H.G., Sigel H. Handbook of toxicity of inorganic compounds, Marcel Dekker, New York; 1988.
.
(1991) Fluorodopa F 18 injection. Pharmacopoeial Forum , United States Pharmacopoeial Convention; 17:1582-1584.
Luxen A., Barrio J.R., Van Moffaert G. (1988) Remote semiautomated production of 6-[18F]fluoro- l-DOPA for human studies with PET. J Labelled Comp Radiopharm 26:465-466.
Wagner R. (1993) Removal of mercury contamination from 6-F-FDOPA preparations. J Labelled Comp Radiopharm 32:250.
Lemaire C., Damhaut P., Plenevaux A., Comar D. (1994) Enantioselective synthesis of 6-[fluorine-18]fluoro- l-DOPA from no-carrier-added fluorine-18-fluoride. J Nucl Med 35:1996-2002.
Sachs C., Jonsson G. (1972) Selective 6-hydroxy-DOPA induced degeneration of central and peripheral noradrenalin neurons. Brain Res 40:563-568.
Pike V.W., Kensett M.J., Turton D.R. (1990) Labelled agents for PET studies of the dopaminergic system — some quality assurance methods, experience and issues. Appl Radiat Isot 41:483-492.
Harvey J., Firnau G., Garnett E.S. (1985) Estimation of the radiation dose in man due to 6-[18F]Fluoro- l-DOPA. J Nucl Med 26:931-935.
Lu E., Meyer E., Kuwabara H. (1995) Reduction of radiation absorbed dose in F-18-FDPOA PET studies by hydration induced voiding. J Nucl Med 36:98.
Hübner K.F., Andrews G.A., Buonocore E. (1979) Carbon-11-labelled amino acids for the rectilinear and positron tomographic imaging of the human pancreas. J Nucl Med 20:507-513.