[en] A variable-resolution atmospheric general circulation model (AGCM) is used for climate change projections over the Antarctic. The present-day simulation uses prescribed observed sea-surface conditions, while a set of five simulations for the end of the 21st century (2070-2099) under the SRES-A1B scenario uses sea- surface condition anomalies from selected CMIP3 coupled ocean-atmosphere climate models. Analysis of the results shows that the prescribed sea-surface condition anomalies have a very strong influence on the simulated climate change on the Antarctic continent, largely dominating the direct effect of the prescribed greenhouse gas concentration changes in the AGCM simulations. Complementary simulations with idealized forcings confirm these results. An analysis of circulation changes using self-organizing maps shows that the simulated climate change on regional scales is not principally caused by shifts of the frequencies of the dominant circulation patterns, except for precipitation changes in some coastal regions. The study illustrates that in some respects the use of bias-corrected sea- surface boundary conditions in climate projections with a variable-resolution atmospheric general circulation model has some distinct advantages over the use of limited-area atmospheric circulation models directly forced by generally biased coupled climate model output.
Disciplines :
Earth sciences & physical geography
Author, co-author :
Krinner, Gerhard; CNRS / UJF – Grenoble 1, Laboratoire de Glaciologie et Géophysique de l’Environnement (LGGE) UMR 5183, Grenoble, F-38041, France
Largeron, Chloé; CNRS / UJF – Grenoble 1, Laboratoire de Glaciologie et Géophysique de l’Environnement (LGGE) UMR 5183, Grenoble, F-38041, France
Ménégoz, Martin
Agosta, Cécile ; Université de Liège - ULiège > Département de géographie > Topoclimatologie
Brutel-Vuilmet, Claire
Language :
English
Title :
Oceanic forcing of Antarctic climate change: A study using a stretched-grid atmospheric general circulation model
Agosta, C., V. Favier, G. Krinner, H. Gallée, and C. Genthon, 2013: High resolution modelling of the Antarctic surface mass balance, application for the twentieth, twenty first and twenty second centuries. Climate Dyn., 41, 3247-3260, doi: 10.1007/s00382-013-1903-9.
Ashfaq, M., C. B. Skinner, and N. S. Diffenbaugh, 2011: Influence of SST biases on future climate change projections. Climate Dyn., 36, 1303-1319, doi: 10.1007/s00382-010-0875-2.
Bengtsson, L., S. Koumoutsaris, and K. Hodges, 2011: Large-scale surface mass balance of ice sheets from a comprehensive atmospheric model. Surv. Geophys., 32, 459-474, doi: 10.1007/s10712-011-9120-8.
Bracegirdle, T. J., W. M. Connolley, and J. Turner, 2008: Antarctic climate change over the twenty first century. J. Geophys. Res., 113, D03103, doi: 10.1029/2007JD008933.
Cassano, J. C., P. Uotila, and A. Lynch, 2006: Changes in synoptic weather patterns in the polar regions in the twentieth and twenty-first centuries, part 1: Arctic. Int. J. Climatol., 26, 1027-1049, doi: 10.1002/joc.1306.
Church, J. A., and Coauthors, 2013: Sea level change. Climate Change 2013: The Physical Science Basis, T. F. Stocker et al., Eds., Cambridge University Press, 1137-1216.
Connolley, W. M., 1997: Variability in annual mean circulation in southern high latitudes. Climate Dyn., 13, 745-756, doi: 10.1007/s003820050195.
Déqué, M., P. Marquet, and R. G. Jones, 1998: Simulation of climate change over Europe using a global variable resolution general circulation model. Climate Dyn., 14, 173-189, doi: 10.1007/s003820050216.
Deser, C., R. Tomas, M. Alexander, and D. Lawrence, 2010: The seasonal atmospheric response to projected arctic sea ice loss in the late twenty-first century. J. Climate, 23, 333-351, doi: 10.1175/2009JCLI3053.1.
Di Luca, A., R. de Elia, and R. Laprise, 2013: Potential for small scale added value of RCM's downscaled climate change signal. Climate Dyn., 40, 601-618, doi: 10.1007/s00382-012-1415-z.
Emori, S., and S. J. Brown, 2005: Dynamic and thermodynamic changes in mean and extreme precipitation under changed climate. Geophys.Res.Lett., 32, L17706, doi: 10.1029/2005GL023272.
Fettweis, X., B. Franco, M. Tedesco, J. H. van Angelen, J. T. M. Lenaerts, M. R. van de Broeke, and H. Gallée, 2012: Estimating Greenland Ice Sheet surface mass balance contribution to future sea level rise using the regional atmospheric climate model MAR. Cryosphere Discuss., 6, 3101-3147, doi: 10.5194/tcd-6-3101-2012.
Fox-Rabinovitz, M., J. Côté, B. Dugas, M. Déqué, and J. L. McGregor, 2006: Variable resolution general circulation models: Stretched-Grid Model Intercomparison Project (SGMIP). J. Geophys. Res., 111, D16104, doi: 10.1029/2005JD006520.
Fox-Rabinovitz, M., J. Côté, B. Dugas, M. Déqué, J. L. McGregor, and A. Belochitski, 2008: Stretched-Grid Model Intercomparison Project: Decadal regional climate simulations with enhanced variable and uniform-resolution GCMs. Meteor. Atmos. Phys., 100, 159-178, doi: 10.1007/s00703-008-0301-z.
Genthon, C., G. Krinner, and H. Castebrunet, 2009: Antarctic precipitation and climate-change predictions: Horizontal resolution and margin vs. plateau issues. Ann. Glaciol., 50, 55-60, doi: 10.3189/172756409787769681.
Gregory, J. M., and P. Huybrechts, 2006: Ice-sheet contributions to future sea-level change. Philos. Trans. Roy. Soc., 364A, 1709-1731, doi: 10.1098/rsta.2006.1796.
Hourdin, F., and Coauthors, 2006: The LMDZ4 general circulation model: Climate performance and sensitivity to parametrized physics with emphasis on tropical convection. Climate Dyn., 27, 787-813, doi: 10.1007/s00382-006-0158-0.
Kohonen, T., 2001: Self-Organizing Maps. Springer Series in Information Sciences, Vol. 30, Springer, 501 pp.
Krinner, G., C. Genthon, Z.-X. Li, and P. Le Van, 1997: Studies of the Antarctic climate with a stretched-grid general circulation model. J. Geophys. Res., 102, 13 731-13 745, doi: 10.1029/96JD03356.
Krinner, G., O. Magand, I. Simmonds, C. Genthon, and J.-L. Dufresne, 2007: Simulated Antarctic precipitation and surface mass balance at the end of the 20th and 21st centuries. Climate Dyn., 28, 215-230, doi: 10.1007/s00382-006-0177-x.
Krinner, G., B. Guicherd, K. Ox, C. Genthon, and O. Magand, 2008: Influence of oceanic boundary conditions in simulations of Antarctic climate and surfacemass balance change during the coming century. J. Climate, 21, 938-962, doi: 10.1175/2007JCLI1690.1.
Ligtenberg, S. R. M., W. J. van de Berg, M. R. van den Broeke, J. G. L. Rae, and E. van Meijgaard, 2013: Future surface mass balance of the Antarctic ice sheet and its influence on sea level change, simulated by a regional atmospheric climate model. Climate Dyn., 41, 867-884, doi: 10.1007/s00382-013-1749-1.
Nakicenovic, N., and Coauthors, 2000: Special Report on Emissions Scenarios. Cambridge University Press, 599 pp. [Available online at http://www.grida.no/climate/ipcc/emission/.]
Racherla, P. N., D. T. Shindell, and G. S. Faluvegi, 2012: The added value to global model projections of climate change by dynamical downscaling: A case study over the continental U.S. using the GISS-ModelE2 and WRF models. J. Geophys. Res., 117, D20118, doi: 10.1029/2012JD018091.
Randall, D. A., and Coauthors, 2007: Climate models and their evaluation. Climate Change 2007: The Physical Science Basis, S. Solomon et al., Eds., Cambridge University Press, 589-662.
Rayner, N. A., D. E. Parker, E. B. Horton, C. K. Folland, L. V. Alexander, D. P. Rowell, E. C. Kent, and A. Kaplan, 2003: Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res., 108, 4407, doi: 10.1029/2002JD002670.
Salas-Mélia, D., F. Chauvin, M. Déqué, H. Douville, J. F. Gueremy, P. Marquet, S. Planton, J. F. Royer, and S. Tyteca, 2005: Description and validation of the CNRM-CM3 global coupled model. CNRM working note 103, 36 pp. [Available online at http://www.cnrm.meteo.fr/scenario2004/references_eng.html.]
Shindell, D. T., and G. A. Schmidt, 2004: Southern Hemisphere climate response to ozone changes and greenhouse gas increases. Geophys. Res. Lett., 31, L18209, doi: 10.1029/2004GL020724.
Stouffer, R. J., S. Manabe, and K. Bryan, 1989: Interhemispheric asymmetry in climate response to a gradual increase of atmospheric CO2. Nature, 342, 660-662, doi: 10.1038/342660a0.
Taylor, K. E., R. J. Stouffer, and G. A. Meehl, 2009: A summary of the CMIP5 experiment design. [Available online at http://cmip-pcmdi.llnl.gov/cmip5/experiment_design.html.]
Uotila, P., A. H. Lynch, J. J. Cassano, and R. I. Cullather, 2007: Changes in Antarctic net precipitation in the 21st century based on Intergovernmental Panel on Climate Change (IPCC) model scenarios. J. Geophys. Res., 112, D10107, doi: 10.1029/2006JD007482.
Vizcaino, M., U. Mikolajewicz, M. Groger, E. Maier-Reimer, G. Schurgers, and A. Winguth, 2008: Long-term ice sheet-climate interactions under anthropogenic greenhouse forcing simulated with a complex Earth System Model. Climate Dyn., 31, 665-690, doi: 10.1007/s00382-008-0369-7.
Vizcaino, M., U. Mikolajewicz, J. Jungclaus, and G. Schurgers, 2010: Climate modification by future ice sheet changes and consequences for ice sheet mass balance. Climate Dyn., 34, 301-324, doi: 10.1007/s00382-009-0591-y.