Downscaling; surface mass balance; surface energy balance; Orographic precipitation; Antarctica; Sea-level; Climate-change; ice-sheet
Abstract :
[en] About 75% of the Antarctic surface mass gain occurs over areas below 2000 m asl, which cover 40% of the grounded ice-sheet. As the topography is complex in many of these regions, SMB modelling is highly dependent on resolution, and studying the impact of Antarctica on the future rise in sea level requires physical approaches. We have developed a low time consuming, physical downscaling model for high-resolution (15 km) long-term surface mass balance (SMB) projections. Here, we present results of this model, called SMHiL (surface mass balance high-resolution downscaling), which was forced with the LMDZ4 atmospheric general circulation model to assess SMB variation in the 21st and the 22nd centuries under two different scenarios.
The higher resolution of SMHiL better reproduces the geographical patterns of SMB and increase significantly the averaged SMB over the grounded ice-sheet for the end of the 20th century. A comparison with more than 3200 quality-controlled field data shows that LMDZ4 and SMHiL compare the observed values equally well. Nevertheless, field data below 2000 m asl are too scarce to efficiency show the interest of SMHiL and measuring the SMB in these undocumented areas should be then a future scientific priority. Our results suggest that running LMDZ4 at a finer resolution (15km) may give a future increase in SMB in Antarctica about 30% higher than by using its standard resolution (60 km) due to higher increase in precipitation in the coastal areas at 15 km. However, a part (~ 15%) of these discrepancies could be an artefact from SMHiL since it neglects the foehn effect and then likely overestimates the precipitation increase. Future changes in the Antarctic SMB at low elevations will result from the conflict between higher snow accumulation and runoff. For this reason, developing downscaling models is crucial to represent processes in sufficient detail and correctly model the SMB in the coastal areas.
Disciplines :
Earth sciences & physical geography
Author, co-author :
Agosta, Cécile ; Université de Liège - ULiège, Département de géographie / UJF–Grenoble 1/CNRS, Laboratoire de Glaciologie et Géophysique de l’Environnement (LGGE) UMR 5183, Grenoble, F-38041, France
Favier, Vincent; UJF–Grenoble 1/CNRS, Laboratoire de Glaciologie et Géophysique de l’Environnement (LGGE) UMR 5183, Grenoble, F-38041, France
Krinner, Gerhard; UJF–Grenoble 1/CNRS, Laboratoire de Glaciologie et Géophysique de l’Environnement (LGGE) UMR 5183, Grenoble, F-38041, France
Gallée, Hubert; UJF–Grenoble 1/CNRS, Laboratoire de Glaciologie et Géophysique de l’Environnement (LGGE) UMR 5183, Grenoble, F-38041, France
Fettweis, Xavier ; Université de Liège - ULiège > Département de géographie > Topoclimatologie
Genthon, Christophe; UJF–Grenoble 1/CNRS, Laboratoire de Glaciologie et Géophysique de l’Environnement (LGGE) UMR 5183, Grenoble, F-38041, France
Language :
English
Title :
High-resolution modelling of the Antarctic surface mass balance, application for the twentieth, twenty first and twenty second centuries
Publication date :
December 2013
Journal title :
Climate Dynamics
ISSN :
0930-7575
eISSN :
1432-0894
Publisher :
Springer Science & Business Media B.V.
Volume :
41
Issue :
11-12
Pages :
3247-3260
Peer reviewed :
Peer Reviewed verified by ORBi
European Projects :
FP7 - 226375 - ICE2SEA - Ice2sea - estimating the future contribution of continental ice to sea-level rise
Agosta C (2012) Évolution du bilan de masse de surface Antarctique par régionalisation physique et conséquences sur les variations du niveau des mers. PhD thesis, Université de Grenoble.
Agosta C, Favier V, Genthon C, Gallée H, Krinner G, Lenaerts JTM, van den Broeke MR (2012) A 40-year accumulation dataset for Adelie Land, Antarctica and its application for model validation. Clim Dyn 38: 75-86. doi: 10. 1007/s00382-011-1103-4.
van den Broeke MR, van de Berg WJ, van Meijgaard E, Reijmer C (2006) Identification of Antarctic ablation areas using a regional atmospheric climate model. J Geophys Res 111(D18): D18110. doi: 10. 1029/2006JD007127.
Ligtenberg SRM, van de Berg WJ, van den Broeke MR, Rae JGL, van Meijgaard E (2013) Future surface mass balance of the Antarctic ice sheet and its influence on sea level change, simulated by a regional atmospheric climate model. Clim Dyn. doi: 10. 1007/s00382-013-1749-1.
Arthern RJ, Winebrenner DP, Vaughan DG (2006) Antarctic snow accumulation mapped using polarization of 4. 3-cm wavelength microwave emission. J Geophys Res 111: D06, 107. doi: 10. 1029/2004JD005667.
Bamber JL, Gomez-Dans J, Griggs J (2009) Antarctic 1 km digital elevation model (DEM) from combined ERS-1 radar and ICES at laser satellite altimetry. Tech. rep., National Snow and Ice Data Center, Boulder, Colorado.
van de Berg WJ, van den Broeke MR, Reijmer C, van Meijgaard E (2006) Reassessment of the Antarctic surface mass balance using calibrated output of a regional atmospheric climate model. J Geophys Res 111: D11, 104. doi: 10. 1029/2005JD006495.
Bintanja R (1999) On the glaciological, meteorological, and climatological significance of Antarctic blue ice areas. Rev Geophys 37(3): 337-359. doi: 10. 1029/1999RG900007.
Bromwich DH, Fogt RL (2004) Strong trends in the skill of the ERA-40 and NCEP-NCAR reanalyses in the high and midlatitudes of the Southern Hemisphere, 1958-2001. J Clim 17: 4603-4618. doi: 10. 1175/3241. 1.
Ding M, Xiao C, Li Y, Ren J, Hou S, Jin B, Sun B (2011) Spatial variability of surface mass balance along a traverse route from Zhongshan station to Dome A, Antarctica. J Glaciol 57(204): 658-666. doi: 10. 3189/002214311797409820.
Favier V, Agosta C, Genthon C, Arnaud L, Trouvillez A, Gallée H (2011) Modeling the mass and surface heat budgets in a coastal blue ice area of Adelie Land, Antarctica. J Geophys Res 116: F03, 017. doi: 10. 1029/2010JF001939.
Favier V, Agosta C, Parouty S, Durand G, Delaygue G, Gallée H, Drouet AS, Trouvilliez A, Krinner G (2012) An updated and quality controlled surface mass balance dataset for Antarctica. Cryosphere Discussions 6: 3667-3702. doi: 10. 5194/tcd-6-3667-2012.
Gallée H, Duynkerke P (1997) Air-snow interactions and the surface energy and mass balance over the melting zone of west Greenland during the Greenland ice margin experiment. J Geophys Res 102(D12): 13, 813-13, 824. doi: 10. 1029/96JD03358.
Gallée H, Agosta C, Gential L, Favier V, Krinner G (2011) A downscaling approach towards high-resolution surface mass balance over Antarctica. Surveys Geophys. doi: 10. 1007/s10712-011-9125-3.
Genthon C, Lardeux P, Krinner G (2007) The surface accumulation and ablation of a coastal blue-ice area near Cap Prudhomme, Terre Adélie, Antarctica. J Glaciol 53(183): 635-645(11). doi: 10. 3189/002214307784409333.
Genthon C, Krinner G, Castebrunet H (2009) Antarctic precipitation and climate-change predictions: horizontal resolution and margin vs plateau issues. Ann Glaciol 50(50): 55-60. doi: 10. 3189/172756409787769681.
Genthon C, Magand O, Krinner G, Fily M (2009) Do climate models underestimate snow accumulation on the Antarctic plateau? A re-evaluation of/from in situ observations in East Wilkes and Victoria Lands. Ann Glaciol 50(50): 61-65. doi: 10. 3189/172756409787769735.
Gordon C, Cooper C, Senior C, Banks H, Gregory J, Johns T, Mitchell J, Wood R (2000) The simulation of SST, sea ice extents and ocean heat transports in a version of the Hadley Centre coupled model without flux adjustments. Clim Dyn 16(2-3): 147-168. doi: 10. 1007/s003820050010.
Gregory JM, Huybrechts P (2006) Ice-sheet contributions to future sea-level change. Philos T R Soc A 364(1844): 1709-1731. doi: 10. 1098/rsta. 2006. 1796.
Hourdin F, Musat I, Bony S, Braconnot P, Codron F, Dufresne JL, Fairhead L, Filiberti MA, Friedlingstein P, Grandpeix JY, Krinner G, Levan P, Li ZX, Lott F (2006) The LMDZ4 general circulation model: climate performance and sensitivity to parametrized physics with emphasis on tropical convection. Clim Dyn 27: 787-813. doi: 10. 1007/s00382-006-0158-0.
Huybrechts P, Gregory J, Janssens I, Wild M (2004) Modelling Antarctic and Greenland volume changes during the 20th and 21st centuries forced by GCM time slice integrations. Glob Planet Change 42(1-4): 83-105. doi: 10. 1016/j. gloplacha. 2003. 11. 011.
Jungclaus JH, Keenlyside N, Botzet M, Haak H, Luo JJ, Latif M, Marotzke J, Mikolajewicz U, Roeckner E (2006) Ocean circulation and tropical variability in the coupled model ECHAM5/MPI-OM. J Clim 19(16): 3952-3972. doi: 10. 1175/JCLI3827. 1.
Krinner G, Genthon C, Li ZX, Le van P (1997) Studies of the Antarctic climate with a stretched-grid general circulation model. J Geophys Res 102(D12): 13, 731-13, 745. doi: 10. 1029/96JD03356.
Krinner G, Magand O, Simmonds I, Genthon C, Dufresne JL (2007) Simulated Antarctic precipitation and surface mass balance at the end of the twentieth and twenty-first centuries. Climate Dynamics 28(2-3): 215-230. doi: 10. 1007/s00382-006-0177-x.
Krinner G, Guicherd B, Ox K, Genthon C, Magand O (2008) Influence of oceanic boundary conditions in simulations of Antarctic climate and surface mass balance change during the coming century. Journal of Climate 21(5): 938-962. doi: 10. 1175/2007JCLI1690. 1.
Lenaerts JTM, van den Broeke MR (2012) Modeling drifting snow in Antarctica with a regional climate model: 2 Results. Journal of Geophysical Research 117(D5): D05, 109. doi: 10. 1029/2010JD015419.
Lenaerts JTM, van den Broeke MR, Berg WJVD, Meijgaard EV, Munneke PK (2012) A new, high-resolution surface mass balance map of Antarctica (1979-2010) based on regional atmospheric climate modeling. Geophysical Research Letter 39(4): L04, 501. doi: 10. 1029/2011GL050713.
van Lipzig N, van Meijgaard E, Oerlemans J (2002) Temperature sensitivity of the Antarctic surface mass balance in a regional atmospheric climate model. Journal of climate 15(19): 2758-2774. doi: 10. 1175/1520-0442(2002)015<2758: TSOTAS>2. 0. CO;2.
Lowe JA, Hewitt CD, van Vuuren DP, Johns TC, Stehfest E, Royer JF, van der Linden PJ (2009) New Study For Climate Modeling, Analyses, and Scenarios. Eos Trans AGU 90(21): 181. doi: 10. 1029/2009EO210001.
Magand O, Genthon C, Fily M, Krinner G, Picard G, Frezzotti M, Ekaykin AA (2007) An up-to-date quality-controlled surface mass balance data set for the 90°-180°E Antarctica sector and 1950-2005 period. Journal of Geophysical Research 112(D12): D12, 106. doi: 10. 1029/2006JD007691.
Meehl GA, Covey C, Delworth T, Latif M, McAvaney B, Mitchell JFB, Stouffer RJ, Taylor KE (2007) The WCRP CMIP3 multimodel dataset - A new era in climate change research. Bull Am Meteorol Soc 88(9): 1383-1394. doi: 10. 1175/BAMS-88-9-1383.
Monaghan AJ, Bromwich DH, Wang SH (2006) Recent trends in Antarctic snow accumulation from Polar MM5 simulations. Philos T R Soc A 364(1844): 1683-1708. doi: 10. 1098/rsta. 2006. 1795.
Motoyama H, Enomoto H, Miyahara M, Koike J (1995) Glaciological data collected by the 34th Japanese Antarctic Research Expedition in 1993. Tech. Rep. 202, National Institute of Polar Research.
van Ommen T, Morgan V, Curran M (2004) Deglacial and holocene changes in accumulation at Law Dome, East Antarctica. Annals of Glaciology 39(1): 359-365. doi: 10. 3189/172756404781814221.
Pettré P, Pinglot J, Pourchet M, Reynaud L (1986) Accumulation distribution in terre Adélie, Antarctica: effect of meteorological parameters. Journal of Glaciology 32(112112): 486-500.
Pfeffer W, Meier M, Illangasekare TK (1991) Retetion of Greenland runoff by refreezing - Implication for projected future sea-level change. Journal of Geophysical Research 96(C12): 22, 117-22, 124.
Pielke R, Wilby R (2012) Regional climate downscaling: What's the point? Eos. Transactions American Geophysical Union 93(5): 52. doi: 10. 1029/2012EO050008.
Rignot E, Velicogna I, van den Broeke MR, Monaghan A, Lenaerts JTM (2011) Acceleration of the contribution of the Greenland and Antarctic ice sheets to sea level rise. Geophysical Research Letter 38: L05, 503. doi: 10. 1029/2011GL046583.
Scarchilli C, Frezzotti M, Grigioni P, De Silvestri L, Agnoletto L, Dolci S (2010) Extraordinary blowing snow transport events in East Antarctica. Climate Dynamics 34(7): 1195-1206. doi: 10. 1007/s00382-009-0601-0.
Sinclair MR (1994) A Diagnostic Model for Estimating Orographic Precipitation. Journal of Applied Meteorology 33: 1163-1175.
Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt K, Tignor M, Miller H (2007) Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.
Taylor K, Stouffer R, Meehl G (2012) An overview of CMIP5 and the experiment design. Bulletin of the American Meteorological Society 93. doi: 10. 1175/BAMS-D-11-00094. 1.
Thompson SL, Pollard D (1997) Greenland and Antarctic mass balances for present and doubled atmospheric CO2 from the GENESIS version-2 global climate model. Journal of Climate 10: 871-900. doi: 10. 1175/1520-0442(1997)010<0871: GAAMBF>2. 0. CO;2.
Turner J, Lachlan-Cope T, Marshall G, Morris E, Mulvaney R, Winter W (2002) Spatial variability of Antarctic peninsula net surface mass balance. Journal of Geophysical Research 107(4173): 10-1029. doi: 10. 1029/2001JD000755.
Uotila P, Lynch AH, Cassano Cullather RI (2007) Changes in Antarctic net precipitation in the 21st century based on Intergovernmental Panel on Climate Change (IPCC) model scenarios. Journal of Geophysical Research 112(D10): D10107. doi: 10. 1029/2006JD007482.
Uppala S, Kallberg P, Simmons A, Andrae U, Bechtold VDC, Fiorino M, Gibson JK, Haseler J, Hernandez A, Kelly GA, Li X, Onogi K, Saarinen S, Sokka N, Allan RP, Andersson E, Arpe K, Balmaseda MA, Beljaars ACM, van de Berg WJ, Bidlot J, Bormann N, Caires S, Chevallier F, Dethof A, Dragosavac M, Fisher M, Fuentes M, Hagemann S, Hólm E, Hoskins BJ, Isaksen L, Janssen PAEM, Jenne R, Mcnally AP, Mahfouf JF, Morcrette JJ, Rayner NA, Saunders RW, Simon P, Sterl A, Trenberth KE, Untch A, Vasiljevic D, Viterbo P, Woollen J (2005) The ERA-40 re-analysis. Quarterly Journal of the Royal Meteorological Society 131(612): 2961-3012. doi: 10. 1256/qj. 04. 176.
Vaughan DG, Bamber JL, Giovinetto M, Russell J, Cooper APR (1999) Reassessment of net surface mass balance in Antarctica. Journal of Climate 12(4): 933-946. doi: 10. 1175/1520-0442(1999)012<0933: RONSMB>2. 0. CO;2.
Whillans I, Bindschadler R (1988) Mass balance of ice stream B, West Antarctica. Ann Glaciol 11(1): 87-193.
Wild M, Calanca P, Scherrer S, Ohmura A (2003) Effects of polar ice sheets on global sea level in high-resolution greenhouse scenarios. Journal of Geophysical Research 108(D5): 4165. doi: 10. 1029/2002JD002451.
Shepherd A et al (2012) A reconciled estimate of ice-sheet mass balance. Science 338(6111): 1183-1189. doi: 10. 1126/science. 1228102.