surface mass balance; surface energy balance; Antarctica
Abstract :
[en] Meteorological data recorded from 12 December 2008 to 30 June 2010 were analyzed to assess the surface energy balance (SEB) in a blue ice area of Cap Prudhomme, Adelie Land (66 degrees 41'S, 139 degrees 55'E). The SEB was computed with a newly developed model forced by direct measurements and with a voluntarily limited number of parameters to better assess model sensitivity. Incoming short-wave radiation was corrected for the slope and orientation of the local terrain assuming direct and diffuse radiation components. Turbulent heat fluxes were assessed using the bulk aerodynamic approach. Heat conduction in the ice was computed by solving the thermal diffusion equation. Snow accumulation was modeled using ERA interim total precipitation and a one-dimensional erosion model. The surface heat budget and accumulation/erosion model accurately reproduced field observations. The occurrence of blue ice is linked with higher rates of erosion than in the surrounding snow covered areas, which may be caused by local flow divergence or snow not being redistributed from higher elevations. Melting occurs between December and February when incoming short-wave radiation is high. However, the SEB was closely linked to air temperature through the incoming long-wave radiation and the turbulent sensible heat flux. Several warm events caused by cyclones intruding into the continent led to significant warming of the ice and high melting rates. Intruding cyclones were also associated with high precipitation that led to significant accumulation. Except in blue ice areas, modeling suggests that expected higher precipitation in a warmer climate will result in more accumulation.
Disciplines :
Earth sciences & physical geography
Author, co-author :
Favier, Vincent; UJF–Grenoble 1 / CNRS, Laboratoire de Glaciologie et Géophysique de l’Environnement (LGGE) UMR 5183, 38041 Grenoble, France
Agosta, Cécile ; UJF–Grenoble 1 / CNRS, Laboratoire de Glaciologie et Géophysique de l’Environnement (LGGE) UMR 5183, 38041 Grenoble, France
Genthon, Christophe; UJF–Grenoble 1 / CNRS, Laboratoire de Glaciologie et Géophysique de l’Environnement (LGGE) UMR 5183, 38041 Grenoble, France
Arnaud, Laurent; UJF–Grenoble 1 / CNRS, Laboratoire de Glaciologie et Géophysique de l’Environnement (LGGE) UMR 5183, 38041 Grenoble, France
Trouvillez, Alexandre; Cemagref, UR ETNA, Saint Martin d’Hères, France
Gallée, Hubert; UJF–Grenoble 1 / CNRS, Laboratoire de Glaciologie et Géophysique de l’Environnement (LGGE) UMR 5183, 38041 Grenoble, France
Language :
English
Title :
Modeling the mass and surface heat budgets in a coastal blue ice area of Adelie Land, Antarctica
Publication date :
2011
Journal title :
Journal of Geophysical Research. Earth Surface
ISSN :
2169-9003
eISSN :
2169-9011
Publisher :
Wiley
Volume :
116
Pages :
-
Peer reviewed :
Peer Reviewed verified by ORBi
European Projects :
FP7 - 226375 - ICE2SEA - Ice2sea - estimating the future contribution of continental ice to sea-level rise
Agosta, C., V. Favier, C. Genthon, H. Gallée, G. Krinner, J. T. Lenaerts, and M. R. van den Broeke (2011), A new surface accumulation dataset for Adelie Land, Antarctica (66°S, 139°E): Application for model validation, Clim. Dyn., doi: 10.1007/s00382-011-1103-4, in press.
Ambach, W. (1974), The influence of cloudiness on the net radiation balance of a snow surface with high albedo, J. Glaciol., 13(67), 73-84.
Andreas, E. L. (1987), A theory for scalar roughness and the scalar transfer coefficient over snow and sea ice, Boundary Layer Meteorol., 38, 159-184, doi:10.1007/BF00121562.
Angström, A. (1961), Techniques of determining the turbidity of the atmosphere, Tellus, 13(2), 214-223, doi:10.1111/j.2153-3490.1961.tb00078.x.
Bintanja, R. (1999), On the glaciological, meteorological, and climatological significance of Antarctic blue ice areas, Rev. Geophys., 37(3), 337-359, doi:10.1029/1999RG900007. (Pubitemid 30008332)
Bintanja, R., and M. R. van den Broeke (1995), The surface energy balance of Antarctic snow and blue ice, J. Appl. Meteorol., 34(4), 902-926, doi:10.1175/1520-0450(1995)034<0902:TSEBOA>2.0.CO;2.
Bintanja, R., S. Jonsson, and W. Knap (1997), The annual cycle of the surface energy balance of Antarctic blue ice, J. Geophys. Res., 102(D2), 1867-1881, doi:10.1029/96JD01801.
Bird, R. E., and R. L. Hulstrom (1981), A simplified clear sky model for direct and diffuse insolation on horizontal surfaces, Tech. Rep. SERI/TR- 62-761, Sol. Res. Inst., Golden, Colo.
Bourges, B. (1985), Improvement in solar declination computation, Sol. Energy, 35(4), 367-369, doi:10.1016/0038-092X(85)90144-6. (Pubitemid 16458809)
Corripio, J. G. (2003), Modelling the energy balance of high altitude glacierised basins in the Central Andes, Ph.D. Thesis, Univ. of Edinburgh, Edinburgh, U. K.
Denby, B., and W. Greuell (2000), The use of bulk and profile methods for determining surface heat fluxes in the presence of glacier winds, J. Glaciol., 46(154), 445-452, doi:10.3189/172756500781833124. (Pubitemid 32065352)
Dorsey, N. E. (1940), Properties of Ordinary Water-Substance in All Its Phases: Water-Vapor, Water, and All the Ices, Reinhold, New York.
Douville, H., J. F. Royer, and J. F. Mahfouf (1995), A new snow parameterization for the Météo-France climate model, Part I: Validation in standalone experiments, Clim. Dyn., 12, 21-35, doi:10.1007/BF00208760. (Pubitemid 26444730)
Eisen, O., et al. (2008), Ground-based measurements of spatial and temporal variability of snow accumulation in East Antarctica, Rev. Geophys., 46, RG2001, doi:10.1029/2006RG000218.
Favier, V., P. Wagnon, J.-P. Chazarin, L. Maisincho, and A. Coudrain (2004), One-year measurements of surface heat budget on the ablation zone of Antizana Glacier 15, Ecuadorian Andes, J. Geophys. Res., 109, D18105, doi:10.1029/2003JD004359. (Pubitemid 39621630)
Gallée, H., and P. Pettré (1998), Dynamical constraints on katabatic wind cessation in Adélie Land, Antarctica, J. Atmos. Sci., 55, 1755-1770, doi:10.1175/1520-0469(1998)055<1755:DCOKWC>2.0.CO;2.
Gallée, H., G. Guyomarc'h, and E. Brun (2001), Impact of snow drift on the Antarctic Ice Sheet surface mass balance: Possible sensitivity to snowsurface properties, Boundary Layer Meteorol., 99(1), 1-19, doi:10.1023/ A:1018776422809. (Pubitemid 32235630)
Gallée, H., C. Agosta, L. Gential, V. Favier, and G. Krinner (2011), A downscaling approach towards high-resolution surface mass balance over Antarctica, Surv. Geophys., doi: 10.1007/s10712-011-9125-3, in press.
Gallet, J. C. (2010), La neige du plateau antarctique: Surface spécifique et applications, Ph.D. thesis, 148 pp., Univ. Joseph Fourier, Grenoble, France.
Genthon, C., P. Lardeux, and G.Krinner (2007), The surface accumulation and ablation of a blue ice area near Cap Prudhomme, Adélie Land, Antarctica, J. Glaciol., 53(183), 635-645, doi:10.3189/002214307784409333.
Georges, C., and G. Kaser (2002), Ventilated and unventilated air temperature measurements for glacier-climate studies on a tropical high mountain site, J. Geophys. Res., 107(D24), 4775, doi:10.1029/2002JD002503.
Helsen, M. M., M. R. van den Broeke, R. S. W. van de Wal, W. J. van de Berg, E. van Meijgaard, C. H. Davis, Y. Li, and I. Goodwin (2008), Elevation changes in Antarctica mainly determined by accumulation variability, Science, 320(5883), 1626-1629, doi:10.1126/science.1153894. (Pubitemid 351931250)
Hock, R., and B. Holmgren (2005), A distributed surface energy-balance model for complex topography and its application to Storglaciären, Sweden, J. Glaciol., 51(172), 25-36, doi:10.3189/172756505781829566. (Pubitemid 41595695)
Hoffman, M. J., A. G. Fountain, and G. E. Liston (2008), Surface energy balance and melt thresholds over 11 years at Taylor Glacier, Antarctica, J. Geophys. Res., 113, F04014, doi:10.1029/2008JF001029.
Intergovernmental Panel on Climate Change (2007), Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, edited by S. Solomon et al., Cambridge Univ. Press, Cambridge, U. K.
Iqbal, M. (1983), An Introduction to Solar Radiation, Academic, Toronto, Ont., Canada.
King, J. C., and J. Turner (1997), Antarctic Meteorology and Climatology, Cambridge Univ. Pres s , Cambridge, U. K. , doi : 10.1017/ CBO9780511524967.
König-Langlo, G., J. C. King, and P. Pettre (1998), Climatology of the three coastal Antarctic stations Dumont d'Urville, Neumayer, and Halley, J. Geophys. Res., 103(D9), 10,935-10,946, doi:10.1029/97JD00527. (Pubitemid 128718599)
Korona, J., E. Berthier, M. Bernard, F. Rémy, and E. Thouvenot (2009), SPIRIT. SPOT 5 stereoscopic survey of polar ice: Reference images and topographies during the fourth International Polar Year (2007-2009), ISPRS J. Photogramm. Remote Sens., 64, 204-212, doi:10.1016/j. isprsjprs.2008.10.005.
Krinner, G., O. Magand, I. Simmonds, C. Genthon, and J. Dufresne (2007), Simulated Antarctic precipitation and surface mass balance at the end of the twentieth and twenty-first centuries, Clim. Dyn., 28(2-3), 215-230, doi:10.1007/s00382-006-0177-x. (Pubitemid 44896862)
Monaghan, A. J., et al. (2006), Insignificant change in Antarctic snowfall since the International Geophysical Year, Science, 313(5788), 827-831, doi:10.1126/science.1128243. (Pubitemid 44223349)
Niemelä, S., P. Räisänen, and H. Savijärvi (2001), Comparison of surface radiative flux parameterizations. Part II: Shortwave radiation, Atmos. Res., 58, 141-154, doi:10.1016/S0169-8095(01)00085-0. (Pubitemid 32779019)
Obleitner, F., and J. de Wolde (1999), On intercomparison of instruments used within the Vatnajökull glacio-meteorological experiment, Boundary Layer Meteorol., 92, 25-35, doi:10.1023/A:1002074627334.
Oke, T. R. (1987), Boundary Layer Climates, 2nd ed., 435 pp., Routledge, New York.
Picard, G., L. Brucker, M. Fily, H. Gallée, and G. Krinner (2009), Modeling time series of microwave brightness temperature in Antarctica, J. Glaciol., 55(191), 537-551, doi:10.3189/002214309788816678.
Pirazzini, R. (2004), Surface albedo measurements over Antarctic sites in summer, J. Geophys. Res., 109, D20118, doi:10.1029/2004JD004617. (Pubitemid 40098452)
Rasmus, K. (2009), A thermo-hydrodynamic modelling study of an idealized low-elevation blue-ice area in Antarctica, J. Glaciol., 55(194), 1083-1091, doi:10.3189/002214309790794805.
Reijmer, C. H., R. Bintanja, and W. Greuell (2001), Surface albedo measurements over snow and blue ice in thematic mapper bands 2 and 4 in Dronning Maud Land, Antarctica, J. Geophys. Res., 106, 9661-9672, doi:10.1029/ 2000JD900718.
Rignot, E., J. L. Bamber, M. R. van den Broeke, C. Davis, Y. Li, W. J. van de Berg, and E. van Meijgaard (2008), Recent Antarctic ice mass loss from radar interferometry and regional climate modelling, Nat. Geosci., 1(2), 106-110, doi:10.1038/ngeo102.
Simmons, A., S. Uppala, D. Dee, and S. Kobayashi (2006), ERA-Interim: New ECMWF reanalysis products from 1989 onwards, ECMWF Newsl., 110, 25-35.
Smeets, C. J. P. P., and M. R. van den Broeke (2008), The parameterisation of scalar transfer over rough ice, Boundary Layer Meteorol., 128, 339-355, doi:10.1007/s10546-008-9292-z.
van As, D., M. R. van den Broeke, and M. M. Helsen (2007), Strong wind events and their impact on the near surface climate at Kohnen Station on the Antarctic Plateau, Antarct. Sci., 19(04), 507-519, doi:10.1017/ S095410200700065X. (Pubitemid 350058939)
van den Broeke, M. R., D. van As, C. Reijmer, and R. van de Wal (2005), Sensible heat exchange at the Antarctic snow surface: A study with automatic weather stations, Int. J. Climatol., 25(8), 1081-1101, doi:10.1002/ joc.1152. (Pubitemid 40974592)
van den Broeke, M., W. J. van de Berg, E. van Meijgaard, and C. Reijmer (2006), Identification of Antarctic ablation areas using a regional climate model, J. Geophys. Res., 111, D18110, doi:10.1029/2006JD007127.
Wagnon, P., J.-E. Sicart, E. Berthier, and J.-P. Chazarin (2003), Wintertime high-altitude surface energy balance of a Bolivian glacier, Illimani, 6340 m above sea level, J. Geophys. Res., 108(D6), 4177, doi:10.1029/ 2002JD002088.
Wendler, G., and N. Ishikawa (1988), Measurements of the atmospheric turbidity at D47, Adelie Land, a contribution to I.A.G.O, Polarforshung, 58(1), 41-46.