[en] This paper presents the impact of model resolution on the simulated wind speed, drifting snow climate and surface mass balance (SMB) of Terre Ade ́lie and its surroundings, East Antarctica. We compare regional climate model simulations at 27 and 5.5 km resolution for the year 2009. The wind speed maxima in Terre Ade ́lie and the narrow glacial valleys of Victoria Land are better represented at 5.5 km resolution, because the topography is better resolved. Drifting snow sublimation is >100 mm a−1 in regions with high wind speeds. Our results indicate a strong feedback between topography, wind gradients and drifting snow erosion. As a result, SMB shows much more local spatial variability at 5.5 km resolution that is controlled by drifting snow erosion, whereas the large-scale SMB gradient is largely determined by precipitation. Drifting snow processes lead to ablation in the narrow glacial valleys of Victoria Land. The integrated SMB equals 86 Gt. Although wind climate, drifting snow processes and SMB variability are better represented at 5.5 km, the area-integrated SMB is not significantly different between the simulations at 27 and 5.5 km. A horizontal resolution of 27 km is sufficient to realistically simulate ice-sheet wide SMB.
Disciplines :
Earth sciences & physical geography
Author, co-author :
Lenaerts, J. T. M.; Institute for Marine and Atmospheric Research, Utrecht University, Utrecht, The Netherlands
van den Broeke, Michiel R.; Institute for Marine and Atmospheric Research, Utrecht University, Utrecht, The Netherlands
Scarchilli, Claudio; ENEA, Rome, Italy
Agosta, Cécile ; UJF-Grenoble 1/CNRS, LGGE UMR 5183, 54 rue Molière, BP 96, 38402, Grenoble Cedex, France
Language :
English
Title :
Impact of model resolution on simulated wind, drifting snow and surface mass balance in Terre Adelie, East Antarctica
Publication date :
2012
Journal title :
Journal of Glaciology
ISSN :
0022-1430
eISSN :
1727-5652
Publisher :
International Glaciological Society, United Kingdom
Volume :
58
Issue :
211
Pages :
821
Peer reviewed :
Peer Reviewed verified by ORBi
European Projects :
FP7 - 226375 - ICE2SEA - Ice2sea - estimating the future contribution of continental ice to sea-level rise
Agosta C and 6 others (2012) A 40-year accumulation dataset for Adelie Land, Antarctica and its application for model validation. Climate Dyn., 38(1-2), 75-86 (doi: 10.1007/s00382-011-1103-4)
Bamber JL, Gomez-Dans JL and Griggs JA (2009) A new 1 km digital elevation model of the Antarctic derived from combined satellite radar and laser data-Part 1: data and methods. Cryosphere, 3(1), 101-111
Bintanja R (1999) On the glaciological, meteorological and climatological significance of Antarctic blue ice areas. Rev. Geophys., 37(3), 337-359 (doi: 10.1029/1999RG900007) (Pubitemid 30008332)
Bromwich DH (1988) Snowfall in high southern latitudes. Rev. Geophys., 26(1), 149-168
Bromwich DH, Parish TR and Zorman CA (1990) The confluence zone of the intense katabatic winds at Terra Nova Bay, Antarctica, as derived from airborne sastrugi surveys and mesoscale numerical modeling. J. Geophys. Res., 95(D5), 5495-5509 (doi: 10.1029/JD095iD05p05495)
Bromwich DH, Rogers AN, K̊allberg P, Cullather RI, White JWC and Kreutz KJ (2000) ECMWF analyses and reanalyses depiction of ENSO signal in Antarctic precipitation. J. Climate, 13(8), 1406-1420 (doi: 10.1175/1520- 0442(2000) 013<1406:EAARDO>2.0.CO;2) (Pubitemid 30341888)
Chritin V, Bolognesi R and Gubler H (1999) FlowCapt: a new acoustic sensor to measure snowdrift and wind velocity for avalanche forecasting. Cold Reg. Sci. Technol., 30(1-3), 125-133 (doi: 10.1016/S0165-232X(99)00012-9) (Pubitemid 30113154)
Cierco F-X, Naaim-Bouvet F and Bellot H (2007) Acoustic sensors for snowdrift measurements: how should they be used for research purposes? Cold Reg. Sci. Technol., 49(1), 74-87 (doi: 10.1016/j.coldregions.2007.01.002) (Pubitemid 46760217)
Dee DP and 36 others (2011) The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Q. J. R.Meteorol. Soc., 137(656), 553-597 (doi: 10.1002/qj.828)
Déry SJ and Yau MK (1999) A bulk blowing snow model. Bound.-Layer Meteorol., 93(2), 237-251 (doi: 10.1023/A:1002065615856) (Pubitemid 30142115)
Ettema J and 6 others (2009) Higher surface mass balance of the Greenland ice sheet revealed by high-resolution climate modelling. Geophys. Res. Lett., 36(12), L12501 (doi: 10.1029/2009GL038110)
Fahnestock MA, Scambos TA, Shuman CA, Arthern RJ, Winebrenner DP and Kwok R (2000) Snow megadune fields on the East Antarctic Plateau: extreme atmosphere-ice interaction. Geophys. Res. Lett., 27(22), 3719-3722 (doi: 10.1029/1999GL011248)
Frezzotti M, Gandolfi S and Urbini S (2002) Snow megadunes in Antarctica: sedimentary structure and genesis. J. Geophys. Res., 107(D18), 4344 (doi: 10.1029/2001JD000673)
Frezzotti M and 12 others (2004) New estimations of precipitation and surface sublimation in East Antarctica from snow accumulation measurements. Climate Dyn., 23(7-8), 803-813 (doi: 10.1007/s00382-004-0462-5)
Frezzotti M, Urbini S, Proposito M, Scarchilli C and Gandolfi S (2007) Spatial and temporal variability of surface mass balance near Talos Dome, East Antarctica. J. Geophys. Res., 112(F2), F02032 (doi: 10.1029/2006JF000638) (Pubitemid 47342574)
Gallée H, Peyaud V and Goodwin I (2005) Simulation of the net snow accumulation along the Wilkes Land transect, Antarctica, with a regional climate model. Ann. Glaciol., 41, 17-22 (doi: 10.3189/172756405781813230)
Genthon C, Lardeux P and Krinner G (2007) The surface accumulation and ablation of a coastal blue-ice area near Cap Prudhomme, Terre Adélie, Antarctica. J. Glaciol., 53(183), 635-645 (doi: 10.3189/002214307784409333)
Genthon C, Krinner G and Castebrunet H (2009) Antarctic precipitation and climate-change predictions: horizontal resolution and margin vs plateau issues. Ann. Glaciol., 50(50), 55-60 (doi: 10.3189/172756409787769681)
Kuipers Munneke P, Van den Broeke MR, Lenaerts JTM, Flanner MG, Gardner AS and Van de Berg WJ (2011) A new albedo parameterization for use in climate models over the Antarctic ice sheet. J. Geophys. Res., 116(D5), D05114 (doi: 10.1029/2010JD015113)
Lenaerts JTM and Van den Broeke MR (2012) Modeling drifting snow in Antarctica with a regional climate model: 2. Results. J. Geophys. Res., 117(D5), D05109 (doi: 10.1029/2010JD015419)
Lenaerts JTM, Van den Broeke MR, Van de BergWJ, Van Meijgaard E and Kuipers Munneke P (2012a) A new, high-resolution surface mass balance map of Antarctica (1979-2010) based on regional atmospheric climate modeling. Geophys. Res. Lett., 39(4), L04501 (doi: 10.1029/2011GL050713)
Lenaerts JTM and 6 others (2012b) Modeling drifting snow in Antarctica with a regional climate model: 1. Methods and model evaluation. J. Geophys. Res., 117(D5), D05108 (doi: 10.1029/2011JD016145)
Liu H, Jezek K, Li B and Zhao Z (2001) Radarsat Antarctic mapping project digital elevation model Version 2. National Snow and Ice Data Center, Boulder, CO. Digital media: http://nsidc.org/data/nsidc-0082.html
Loewe F (1972) The land of storms. Weather, 27(3), 110-121
Mahesh A, Eager R, Campbell JR and Spinhirne JD (2003) Observations of blowing snow at the South Pole. J. Geophys. Res., 108(D22), 4707 (doi: 10.1029/2002JD003327)
Mawson D (1915) The home of the blizzard; being the story of the Australasian Antarctic Expedition 1911-1914. Heinemann, London
Palm SP, Yang Y, Spinhirne JD and Marshak A (2011) Satellite remote sensing of blowing snow properties over Antarctica. J. Geophys. Res., 116(D16), D16123 (doi: 10.1029/2011JD015828)
Parish TR and Bromwich DH (1987) The surface windfield over the Antarctic ice sheets. Nature, 328(6125), 51-54
Sanz Rodrigo J (2011) On Antarctic wind engineering. (PhD thesis, Université Libre de Bruxelles) http://theses.ulb.ac.be/ETD-db/collection/ available/ULBetd-03152011-235458
Scarchilli C, Frezzotti M, Grigioni P, De Silvestri L, Agnoletto L and Dolci S (2010) Extraordinary blowing snow transport events in East Antarctica. Climate Dyn., 34(7-8), 1195-1206 (doi: 10.1007/s00382-009-0601-0)
Stearns LA (2011) Dynamics and mass balance estimates of four large East Antarctic outlet glaciers. Ann. Glaciol., 52(59), 116-126 (doi: 10.3189/172756411799096187)
Stearns LA, Smith BE and Hamilton GS (2008) Increased flow speed on a large East Antarctic outlet glacier caused by subglacial floods. Nature Geosci., 1(12), 827-831 (doi: 10.1038/ngeo356)
Und́en P and 26 others (2002) The high resolution limited area model. HIRLAM-5 scientific documentation. Swedish Meteorological and Hydrological Institute, Norrköping (Technical Report)
Van de Berg WJ, Van den Broeke MR, Reijmer CH and Van Meijgaard E (2006) Reassessment of the Antarctic surface mass balance using calibrated output of a regional atmospheric climate model. J. Geophys. Res., 111(D11), D11104 (doi: 10.1029/2005JD006495) (Pubitemid 44137665)
Van den Broeke M, Van de Berg WJ, Van Meijgaard E and Reijmer C (2006) Identification of Antarctic ablation areas using a regional atmospheric climatemodel. J.Geophys. Res., 111(D18),D18110 (doi: 10.1029/2006JD007127)
Wendler G, Stearns C, Weidner GA and Dargaud G (1997) On the extraordinary katabatic winds of Adélie Land. J. Geophys. Res., 102(D4), 4463-4474 (doi: 10.1029/96JD03438)
White PW (2001) Physical processes (CY23R4), Part IV. European Centre for Medium-Range Weather Forecasts, Reading (Technical Report)