Article (Scientific journals)
Optimal discovery with probabilistic expert advice: finite time analysis and macroscopic optimality
Bubeck, Sébastien; Ernst, Damien; Garivier, Aurélien
2013In Journal of Machine Learning Research, 14, p. 601-623
Peer Reviewed verified by ORBi
 

Files


Full Text
bubeck13a.pdf
Publisher postprint (327.2 kB)
Download

All documents in ORBi are protected by a user license.

Send to



Details



Keywords :
optimal discovery; probabilistic experts; optimistic algorithm; Good-Turing estimator; UCB
Abstract :
[en] We consider an original problem that arises from the issue of security analysis of a power system and that we name optimal discovery with probabilistic expert advice. We address it with an algorithm based on the optimistic paradigm and on the Good-Turing missing mass estimator. We prove two different regret bounds on the performance of this algorithm under weak assumptions on the probabilistic experts. Under more restrictive hypotheses, we also prove a macroscopic optimality result, comparing the algorithm both with an oracle strategy and with uniform sampling. Finally, we provide numerical experiments illustrating these theoretical findings.
Disciplines :
Computer science
Author, co-author :
Bubeck, Sébastien
Ernst, Damien  ;  Université de Liège - ULiège > Dép. d'électric., électron. et informat. (Inst.Montefiore) > Smart grids
Garivier, Aurélien
Language :
English
Title :
Optimal discovery with probabilistic expert advice: finite time analysis and macroscopic optimality
Publication date :
February 2013
Journal title :
Journal of Machine Learning Research
ISSN :
1532-4435
eISSN :
1533-7928
Publisher :
Microtome Publishing, Brookline, United States - Massachusetts
Volume :
14
Pages :
601-623
Peer reviewed :
Peer Reviewed verified by ORBi
Available on ORBi :
since 21 February 2013

Statistics


Number of views
48 (10 by ULiège)
Number of downloads
67 (5 by ULiège)

Scopus citations®
 
17
Scopus citations®
without self-citations
17

Bibliography


Similar publications



Contact ORBi