Dissolved silicon; Si transport; Mechanistic Si model; Land use; Amorphous Si
Abstract :
[en] This paper reviews the processes which determine the concentrations of dissolved silicon (DSi) in soil water and proposes a mechanistic model for understanding the transport of Si through a typical podzol soil to the river. DSi present in natural waters originates from the dissolution of mineral and amorphous Si sources in the soil. However, the DSi concentration in natural waters will be dependent on both dissolution and deposition/precipitation processes. The net DSi export is controlled by soil composition like (mineralogy and saturated porosity) as well as water composition (pH, concentrations of organic acids, CO2 and electrolytes). These state variables together with production, polymerization and adsorption equations constitute a mechanistic framework determining DSi concentrations. For a typical soil profile in a temperate climate, we discuss how the values of these key controls differ in each soil horizon and how it influences the DSi transport. Additionally, the impact of external forcings such as seasonal climatic variations and land use, is evaluated. This model is a first step to better understand Si transport processes in soils and should be further validated with field measurements.
Disciplines :
Geological, petroleum & mining engineering
Author, co-author :
Ronchi, Benedicta; Katholieke Universiteit Leuven - KUL > Earth and Environmental Sciences > Hydrogeologie
Vandevenne, Floor; University Antwerpen > Ecosystem Management Research Group, Department Biology
Pena Barao, Ana Lucia; University Antwerpen > Ecosystem Management Research Group, Department Biology
Clymans, Wim; Katholieke Universiteit Leuven - KUL > Earth and Environmental Sciences
Struyf, Eric; University Antwerpen > Ecosystem Management Research Group, Department Biology
Batelaan; Vrije Universiteit Brussel - VUB > Department of Hydrology and Hydraulic Engineering
Dassargues, Alain ; Université de Liège - ULiège > Département Argenco : Secteur GEO3 > Hydrogéologie & Géologie de l'environnement
Govers, Gérard; Katholieke Universiteit Leuven - KUL > Earth and Environmental Sciences
Language :
English
Title :
Transport of dissolved Si from soil to river: a conceptual mechanistic model
Tréguer PJ, De La Rocha CL (2013) The world ocean silica cycle. Annu Rev Mar Sci 5: 5. 1-5. 25.
Ittekot V, Humborg C, Schäfer P (2000) Hydrological alterations and marine biogeochemistry: a silicate issue? Bioscience 50: 776-782.
Sommer M, Kaczorek D, Kuzyakov Y, Breuer J (2006) Silicon pools and fluxes in soils and landscapes-a review. J Plant Nutr Soil Sci 169: 310-329.
Cornelis J-T, Delvaux B, Georg RB, Lucas Y, Ranger J, Opfergelt S (2011) Tracing the origin of dissolved silicon transferred from various soil-plant systems towards rivers: a review. Biogeosciences 8: 89-112.
Sauer D, Saccone L, Conley DJ, Herrmann L, Sommer M (2006) Review of methodologies for extracting plant-available and amorphous Si from soils and aquatic sediments. Biogeochemistry 80: 89-108.
Laruelle GG, Roubeix V, Sferratore A, Brodherr B, Ciuffa D, Conley DJ, Dürr HH, Garnier J, Lancelot C, Le Thi Phuong Q, Meunier J-D, Meybeck M, Michalopoulos P, Moriceau B, Longphuirt SN, Loucaides S, Papush L, Presti M, Ragueneau O, Regnier P, Saccone L, Slomp CP, Spiteri C, van Cappellen P (2009) Anthropogenic perturbations of the silicon cycle at the global scale: key role of the land-ocean transition. Glob Biogeochem Cycles 23: GB4031.
Gérard F, François M, Ranger J (2002) Processes controlling silica concentration in leaching and capillary soil solutions of an acidic brown forest soil (Rhône, France). Geoderma 107: 197-226.
Smis A, van Damme S, Struyf E, Clymans W, van Wesemael B, Frot E, Vandevenne F, van Hoestenberghe T, Govers G, Meire P (2011) A trade-off between dissolved and amorphous silica transport during peak flow events (Scheldt river basin, Belgium): impacts of precipitation intensity on terrestrial Si dynamics in strongly cultivated catchments. Biogeochemistry 106: 475-487.
ClymansW, Struyf E, Govers G, Vandevenne F, Conley DJ (2011) Anthropogenic impact on amorphous silica pools in temperate soils. Biogeosciences. http://www. biogeosciences-discuss. net/8/4391/2011/bgd-8-4391-2011. pdf.
Kurtz AC, Lugolobi F, Salvucci G (2011) Germanium-silicon as a flow path tracer: application to the Rio Icacos watershed. Water Resour Res 47: 16.
McDonnell JJ (1990) Rationale for old water discharge through macropores in a steep, humid catchment. Water Resour Res 26: 2821-2832.
Doucet F, Schneider C, Bones S, Kretchner A, Moss I, Tekely P, Exley C (2001) The formation of hydroxyaluminosilicates of geochemical and biological significance. Geochim Cosmochim Acta 65(15): 2461-2467.
van Cappellen P (2003) Biomineralization and global biogeochemical cycles. In: Dove P, DeYoreo J, Weiner S (eds) Biomineralizations. Reviews in mineralogy and geochemistry 54: 357-381. Mineral. Soc. Amer., Washington, DC. ISBN 093995066-9.
McKeague JA, Cline MG (1963) Silica in soil solutions: II. The adsorption of monosilicic acid by soil and by other substances. Can J Soil Sci 43: 83-96.
Conrad CF, Icopini GA, Yasuhara H, Bandstra JZ, Brantley SL, Heaney PJ (2007) Modeling the kinetics of silica nanocolloid formation and precipitation in geologically relevant aqueous solutions. Geochim Cosmochim Acta 71: 531-542.
Jackson ML, Tyler SA, Willis AL, Bourbeau GA, Pennington RP (1948) Weathering sequence of clay-size minerals in soils and sediments. I. Fundamental generalizations. J Phys Colloid Chem 52: 1237-1260.
Bormann H, Klaassen K (2008) Seasonal and land use dependent variability of soil hydraulic and soil hydrological properties of two Northern German soils. Geoderma 145: 295-302.
Berner RA (1992) Weathering, plants and the long-term carbon cycle. Geochim Cosmochim Acta 56: 3225-3231.
Drever JI (1994) The effect of land plants on weathering rates of silicate minerals. Geochim Cosmochim Acta 58 (10): 2325-2332.
Albertsen M (1977) Labor- und Felduntersuchungen zum gasaustausch zwischen Grundwasser und Atmosphäre über natürlichen und verunreinigten Grundwässern. Thesis, Univ. Kiel.
Street-Perrott FA, Barker PA (2008) Biogenic silica: a neglected component of the coupled global continental biogeochemical cycles of carbon and silicon. Earth Surf Process Landf 33: 1436-1457.
Scanlon TM, Raffensperger JP, Hornberger GM (2001) Modeling transport of dissolved silica in a forested headwater catchment: implications for defining the hydrochemical response of observed flow pathways. Water Resour Res 37(4): 1071-1082.
Iler RK (1979) The chemistry of silica: solubility, polymerization, colloid and surface chemistry, and biochemistry. John Wiley & Sons, New York, 866 p.
Drees LR, Wilding LP, Smeck NE, Senkayi AL (1989) In: Dixon B, Weed SB (eds) Minerals in soil environments, 2nd edn. Soil Sci Soc Am J, Madison, Wisconsin.
Wada K (1989) In: Dixon JB, Weed SB (eds) Minerals in soil environments. SSSA Book series No. 1, Madison.
Matichenkov VV, Bocharnikova EA (2001) In: Datnoff LE, Snyder GH, Korndörfer GH (eds) Silicon in agriculture. Studies in Plant Science 8, Elsevier, Amsterdam.
Chadwick OA, Hendricks DM, Nettleton WD (1987) Silica in duric soils, 2. Mineralogy, Soil Sci Soc Am J 51(4): 982-985.
Struyf E, Conley DJ (2008) Silica: an essential nutrient in wetland biogeochemistry. Front Ecol Environ 6. doi: 10. 1890/070126.
Aoki Y, Hoshino M, Matsubara T (2007) Silica and testate amoebae in a soil under pine-oak forest. Geoderma 142(1-2): 29-35.
Stumm W, Wollast R (1990) Coordination chemistry of weathering: kinetics of the surface-controlled dissolutidn of oxide minerals. Rev Geophys 28: 53-69.
Dietzel M (2002) Dissolution of silicates and the stability of polysilicic acid. Geochim Cosmochim Acta 64(19): 3275-3281.
Appelo CAJ, Postma D (1993) Geochemistry, groundwater, and pollution. A. A. Balkema, Rotterdam.
Bowser CJ, Jones BF (2002) Mineralogical controls on the composition of natural waters dominated by silicate hydrolysis. Am J Sci 302: 582-662.
Dove PM (1995) Kinetic and thermodynamic controls on silica reactivity in weathering environments. In: Chemical weathering rates of silicate minerals. Mineralogical Society of America and the Geochemical Society. Rev Mineral Geochem 31: 235-290.
Dove PM, Crerar DA (1990) Kinetics of quartz dissolution in electrolyte solutions using a hydrothermal mixed flow reactor. Geochim Cosmochim Acta 54: 955-969.
Graf T, Therrien R (2007) Coupled thermohaline groundwater flow and single-species reactive solute transport in fractured porous media. Adv Water Resour 30: 742-771.
Dove PM (1999) The dissolution kinetics of quartz in aqueous mixed cation solutions. Geochim Cosmochim Acta 63(22): 3715-3727.
Sverdrup HU, Warfvinge P (1988) Weathering of primary silicate minerals in the natural soil environment in relation to a chemical weathering model. Water Air Poll 38: 387-408.
Sverdrup HU (1990) The kinetics of base cation release due to chemical weathering. Lund Univ. Press, Sweden, 246 p. ISBN 0-86238-247-5.
Aagaard P, Helgeson HC (1982) Thermodynamic and kinetic constraints on reaction rates among mineral and aqueous solutions - I. Theoretical considerations. Am J Sci 282: 237-285.
Helgeson HC, Murphy WM, Aagaard P (1984) Thermodynamic and kinetic constraints on reaction rates among minerals and aqueous solution-II. Rate constants, effective surface area and the hydrolysis of feldspar. Geochim Cosmochim Acta 48: 2405-2432.
Chou L, Wollast R (1985) Steady-State kinetics and dissolution mechanisms of albite. Am J Sci 285: 963-993.
Holland H, Lazar B, Mc Gaffrey M (1986) Evolution of the atmosphere and the oceans. Nature 320: 27-33.
Berg A, Banwart SA (2000) Carbon dioxide mediated dissolution of Ca-feldspar: implications for silicate weathering. Chem Geol 163(1-4): 25-42.
Pokrovski GS, Schott J (1998) Experimental study of the complexation of silicon and germanium with aqueous organic species: Implications for germanium and silicon transport and Ge/Si ratio in natural waters. Geochim Cosmochim Acta 62(21/22): 3413-3428.
Oelkers EH, Schott J (1999) Experimental study of kyanite dissolution rates as a function of chemical affinity and solution composition. Geochim Cosmochim Acta 63(6): 785-797.
Opfergelt S, Cardinal D, André L, Delvigne C, Bremond L, Delvaux B (2010) Variations of δ30Si and Ge/Si with weathering and biogenic input in tropical basaltic ash soils under monoculture. Geochim Cosmochim Acta 74: 225-240.
Gautier JM, Oelkers EH, Schott J (1994) Experimental study of K-feldspar dissolution rates as a function of chemical affinity at 150 °C and pH 9. Geochim Cosmochim Acta 58: 4549-4560.
Devidal JL (1994) Solubilité et cinétique de dissolution/précipitation de la kaolinite en milieu hydrothermal. Approche expérimentale et modélisation. Ph. D. Thesis University Paul Sabatier, Toulouse, France.
Devidal JL, Dandurand JL, Schott J (1992) In: Kharaka YK, Maest AS (eds) Water rock interaction. A. A. Balkema, Rotterdam.
Devidal JL, Schott J, Dandurand JL (1997) An experimental study of kaolinite dissolution and precipitation kinetics as a function of chemical affinity and solution composition at 150 °C, 40 bars, and pH 2, 6. 8, and 7. 8. Geochim Cosmochim Acta 61: 5165-5186.
Murphy WM, Pabalan RT, Prikryl JD, Goulet CJ (1996) Reaction kinetics and thermodynamics of aqueous dissolution and growth of analcime and Na-clinoptilolite at 25 °C. Am J Sci 296: 128-186.
Andrews J, Schlesinger W (2001) Soil CO2 dynamics, acidification, and chemical weathering in a temperate forest with experimental CO2 enrichment. Glob Biogeochem Cycles 15: 149-162.
Taylor LL, Leake JR, Quirk J, Hardy K, Banwart SA, Beerling DJ (2009) Biological weathering and the long-term carbon cycle: integrating mycorrhizal evolution and function into the current paradigm. Geobiology 7: 171-191.
Lerman A, Wu LL, Mackenzie FT (2007) CO2 and H2SO4 consumption in weathering and material transport to the ocean, and their role in the global carbon balance. Mar Chem 106: 326-350.
Klaminder J, Grip H, Mörth CM, Laudon H (2011) Carbon mineralization and pyrite oxidation in groundwater: importance for silicate weathering in boreal forest soils and stream base-flow chemistry. Appl Geochem 26: 319-325.
Farmer VC, Delbos E, Miller JD (2005) The role of phytolith formation and dissolution in controlling. Geoderma 127: 71-79.
Giesler R, Ilvesniemi H, Nyberg L, van Hees P, Starr M, Bishop K, Kareinen T, Lundstrfm US (2000) Distribution and mobilization of Al, Fe and Si in three podzolic soil profiles in relation to the humus layer. Geoderma 94: 249-263.
Saccone L, Conley DJ, Sauer D (2006) Methodologies for amorphous silica analysis. J Geochem Explor 88: 235-238.
van Cappellen P, Dixit S, van Beusekom J (2002) Biogenic silica dissolution in the oceans: Reconciling experimental and field-based dissolution rates. Glob Biogeochem Cycles 16. doi: 10. 1029/2001GB001431.
Loucaides S, Behrends T, van Cappellen P (2010) Reactivity of biogenic silica: Surface versus bulk charge density. Geochim Cosmochim Acta 74: 517-530.
Struyf E, Conley DJ (2012) Emerging understanding of the ecosystem silica filter. Biogeochemistry 107: 9-18.
Beckwith RS, Reeve E (1962) Studies on soluble silica in soils. I. The Sorption of silicic acid by soils and minerals. Aust J Soil Res 1(2): 157-168.
Hiemstra T, Barnett MO, van Riemsdijk WH (2007) Interaction of silicic acid with goethite. J Colloid Interface Sci 310: 8-17.
Hiemstra T, van Riemsdijk WH (2002) On the relationship between surface structure and ion complexation of oxide-solution interfaces. In: Encyclopedia of surface and colloid science, 1st edn. Marcel Dekker Inc., New York. doi: WebQuery/wurpubs/122944.
Rietra RP, Hiemstra T, van Riemsdijk WH (2000) Electrolyte anion affinity and its effect on oxyanion adsorption on goethite. J Colloid Interface Sci 229: 199-206.
Rajasekaran R, Rajendiran KV, Kumar RM, Jayavel R, Dhanasekaran D, Ramasamy P (2003) Investigation of the nucleation kinetics of zinc thiourea chloride (ZTC) single crystals. Mater Chem Phys 82: 273-280.
Izumi S, Hara S, Kumagai T, Sakai S (2005). Molecular dynamics study of homogeneous crystal nucleation in amorphous silicon. J Cryst Growth 274: 47-54.
Madras G, McCoy BJ (2005) Nucleation, growth, and coarsening for two- and three-dimensional phase transitions. J Cryst Growth 279: 466-476.
Icopini GA, Brantley SL, Heaney PJ (2005) Kinetics of silica oligomerization and nanocolloid formation as a function of pH and ionic strength at 25 °C. Geochim Cosmochim Acta 69(2): 293-303.
Lucas Y (2001) The role of plants in controlling rates and products of weathering: importance of biological pumping. Annu Rev Earth Planet Sci 29: 135-163.
Exley C (1998) Silicon in life: a bioinorganic solution to bioorganic essentiality. J Inorg Biochem 69: 139-144.
Huang PM (1991) Ionic factors affecting the formation of short-range ordered aluminosilicates. Soil Sci Soc Am J 55: 1172-1180.
Turpault M-P, Righi D, Utérano C (2008) Clay minerals: precise markers of the spatial and temporal variability of the biogeochemical soil environment. Geoderma 147: 108-115.
Fulweiler RW, Nixon SW (2005) Terrestrial vegetation and the seasonal cycle of dissolved silica in a southern New England coastal river. Biogeochemistry 74: 115-130.
Gérard F, Mayer KU, Hodson MJ, Ranger J (2008) Modelling the biogeochemical cycle of silicon in soils: application to a temperate forest ecosystem. Geochim Cosmochim Acta 72: 741-758.
Mayer KU, Frind EO, Blowes DW (2002) Multicomponent reactive transport modeling in variably saturated porous media using a generalized formulation for kinetically controlled reactions. Water Resour Res 38: 1174-1195.
van Hees PAW, Lundström US, Giesler R (2000) Low molecular weight organic acids and their Al-complexes in soil solution-composition, distribution and seasonal variation in three podzolized soils. Geoderma 94: 173-200.
White AF, Vivit DV, Schulz MS, Bullen TD, Evett RR, Aagarwal J (2012) Biogenic and pedogenic controls on Si distributions and cycling in grasslands of the Santa Cruz soil chronosequence, California. Geochim Cosmochim Acta 94: 72-94.
Jury W, Horton R (2004) Soil physics, 6th edn. John Wiley & Sons, New York, 370 p.
FAO, Food and Agriculture Organization (2001) Lecture notes ont the major soils of the world. World Soil Resour Rep http://www. fao. org/docrep/003/Y1899E/Y1899E00. HTM.
Bormann BT, Wang D, Bormann FH, Benoit G, April R, Snyder MC (1998) Rapid, plant-induced weathering in an aggrading experimental ecosystem. Biogeochemistry 43: 129-155.
Moulton KL, West J, Berner RA (2000) Solute flux and mineral mass balance approaches to the quantification of plant effects on silicate weathering. Am J Sci 300: 539-570.
Bear J (1988) Dynamics of fluids in porous media. Elsevier, New York.
Berner RA, Rao JL, Chang S, O'Brien R, Keller CK (1998) Seasonal variability of adsorption and exchange equilibria in soil waters. Aquat Geochem 4: 273-290.
Savva Y, Szlavecz K, Pouyat RV, Groffman PM, Heisler G (2009) Effects of land use and vegetation cover on soil temperature in an urban ecosystem. Soil Sci Soc Am J 74: 469-480.
Johanson E, Sandèn P, Öberg G (2003) Organic chlorine in deciduous and coniferous forest soils in Southern Sweden. Soil Sci 168(5): 347-355.
Struyf E, Smis A, van Damme S, Garnier J, Govers G, van Wesemael B, Conley DJ, Batelaan O, Frot E, Clymans W, Vandevenne F, Lancelot C, Goos P, Meire P (2010) Historical land use change has lowered terrestrial silica mobilization. Nat Commun 1(129). doi: 10. 1038/ncomms1128.
Engström E, Rodushkin I, Ingri J, Baxter DC, Ecke F, Österlund H, Öhlander B (2010) Temporal isotopic variations of dissolved silicon in a pristine boreal river. Chem Geol 271: 142-152.
Neal C, Jarvie HP, Neal M, Love AJ, Hill L, Wickham H (2005) Water quality of treated sewage effluent in a rural area of the upper Thames Basin, southern England, and the impacts of such effluents on riverine phosphorus concentrations. J Hydrol 304: 103-117.
Bartoli F (1983) The biogeochemical cycle of silicon in two temperate forest ecosystems. Environ Biogeochem Ecol Bull 35: 469-476.
Cornelis J-T, Ranger J, Iserentant A, Delvaux B (2010) Tree species impact the terrestrial cycle of silicon through various uptakes. Biogeochemistry 97: 231-245.
Markewitz D, Richter D (1998) The bio in aluminium and silicon geochemistry. Biogeochemistry 42: 235-252.
Conley DJ (2002) Terrestrial ecosystems and the global biogeochemical silica cycle. Glob Biogeochem Cycles 16(4): 1121. doi: 10. 1029/2002GB001894.
Petersen L (1976) In: Hutchinson TC, Havas M (eds) Effects of acid precipitation on terrestrial ecosystems. Plenum, New York.
Alexandre A, Meunier J-D, Colin F, Koud J-M (1997) Plant impact on the biogeochemical cycle of silicon and related weathering processes. Geochim Cosmochim Acta 61(63): 677-682.
Meunier J-D, Colin F, Alarcon C (1999) Biogenic silica storage in soils. Geology 27: 835-838.
Carey JC, Fulweiler R (2012) Watershed land use alters riverine silica cycling. Biogeochemistry. doi: 10. 1007/s10533-012-9784-2.
Cornelis J-T, Delvaux B, Titeux H (2010) Contrasting silicon uptakes by coniferous trees: a hydroponic experiment on young seedlings. Plant Soil 336: 99-106.
Cornelis J-T, Delvaux B, Cardinal D, André L, Ranger J, Opfergelt S (2010) Tracing the mechanisms controlling the release of dissolved silicon in forest soil solutions using Si isotopes and Ge/Si ratios. Geochim Cosmochim Acta 74: 3913-3924.
Marschner H (1995) Mineral nutrition of higher plants, 2nd edn. Academic Press, London.
Blecker SW, McCulley RL, Chadwick OA, Kelly EF (2006) Biologic cycling of silica across a grassland bioclimosequence. Glob Biogeochem Cycles 20. doi: 10. 1029/2006GB002690.
Lucas Y, Luizao FJ, Chauvel A, Rouiller J, Nahon D (1993) The relation between biological activity of the rain forest and mineral composition of soils. Science 260: 521-523.
Wilding LP, Drees LR (1974) Contributions of forest opal and associated crystalline phases of fine silt and clay fractions of soils. Clay Clay Miners 22: 295-306.
Massey FP, Hartley SE (2006) Experimental demonstration of the antiherbivore effects of silica in grasses: impacts on foliage digestibility and vole growth rates. Proc R Soc B 273: 2299-2304.
Melzer SE, Knapp AK, Kirkman KP, Smith MD, Blair JM, Kelly EF (2010) Fire and grazing impacts on silica production and storage in grass dominated ecosystems. Biogeochemistry 97: 263-278.
Meunier, J-D, Guntzer F, Kirman S, Keller C (2008) Terrestrial plant-Si and environmental changes. Mineral Mag 72: 263-267.
Vandevenne F, Struyf E, Clymans W, Meire P (2012) Agricultural silica harvest: have humans created a new and important loop in the global silica cycle? Research Communications. Front Ecol Environ 10: 243-248.
Tejedor M, Jiménez C, Rodríguez M, Morillas G (2004) Effect of soil use change on soil temperature regime ISCO 2004 - 13th International Soil Conservation Organisation Conference - Brisbane, July 2004 Conserving Soil and Water for Society: Sharing Solutions.
Likens GE, Bormann FH, Johnson NM, Fisher DW, Pierce RS (1970) Effects of forest cutting and herbicide treatment on nutrient budgets in the hubbard brook watershed-ecosystem. Ecol Monogr 40(1): 23-47.
Rice KC, Bricker OP (1995) Seasonal cycles of dissolved constituents in streamwater in two forested catchments in the mid-Atlantic region of the eastern USA. J Hydrol 170(1-4): 137-158.
Tallberg P, Hartikainen H, Kairesalo T (1997) Why is soluble silicon in interstitial and lake water samples immobilized by freezing? Water Res 31(1): 130-134.
Parkhurst DL, Appelo CAJ (1999) User's guide to PhreeqC (Version 2)-a computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations, U. S. Geological Survey, Water-Resources Investigations Report 99-4259, Denver, CO.
Landeweert R, Hoffland E, Finlay RD, Kuyper TW, van Breemen N (2001) Linking plants to rocks: ectomycorrhizal fungi mobilize nutrients from minerals. Trends Ecol Evol 16-25: 248-254.
Kim J, Dong H, Seabaugh J, Newell JS, Eberl DD (2004) Role of microbes in the smectite-to-illite reaction. Science 303: 830-832.
Watteau F, Villemin G (2001) Ultrastructural study of the biogeochemical cycle of silicon in the soil and litter of a temperate forest. Eur J Soil Sci 52: 385-396.
Reiners WA, Bouwman AF, Parsons WFJ, Keller M (1994) Tropical rain forest conversion to pasture: changes in vegetation and soil properties. Ecol Appl 4: 363-377.
Derry LA, Kurtz AC, Ziegler K, Chadwick OA (2005) Biological control of terrestrial silica cycling and export fluxes to watersheds. Nature 728: 433.
Douthitt CB (1982) The geochemistry of the stable isotopes of silicon. Geochim Cosmochim Acta 46: 1449-1458.
Opfergelt S, Cardinal D, Henriet C, Draye X, André L, Delvaux B (2006a) Silicon isotopic fractionation by banana (Musa spp.) grown in a continuous nutrient flow device. Plant Soil 285: 333-345. doi: 10. 1007/s11104-006-9019-1.
Murnane RJ, Stallard RF (1990) Germanium of silicon of the rivers of the Orinoco drainage basin. Nature 344: 749-752.
Kurtz AC, Derry LA, Chadwick OA (2002) Germanium-silicon fractionation in the weathering environment. Geochim Cosmochim Acta 66: 1525-1537.
Scribner AM, Kurtz AC, Chadwick OA (2006) Germanium sequestration by soil: targeting the roles of secondary clays and Feoxyhydroxides. Earth Planet Sci Lett 243: 760-770.
Blecker SW, King SL, Derry LA, Chadwick OA, Ippolito JA, Kelly EF (2007) The ratio of germanium to silicon in plant phytoliths: quantification of biological discrimination under controlled experimental conditions. Biogeochemistry 86: 189-199.
Delvigne C, Opfergelt S, Cardinal D, Delvaux B, Andre L (2009) Distinct silicon and germanium pathways in the soil-plant system: evidence from banana and horsetail. J Geophys Res 114: G02013. doi: 10. 1029/2008JG000899.
Chadwick OA, Kelly EF, Merritts DM, Amundson RG (1994) Atmospheric carbon dioxide consumption during soil development. Biogeochemistry 24: 115-127.
Goddéris Y, François LM, Probst A, Schott J, Moncoulon D, Labat D, Viville D (2006) Modelling weathering processes at the catchment scale: the WITCH numerical model. Geochim Cosmochim Acta 70: 1128-1147.
Gordon LJ, Peterson GD, Bennett EM (2008) Agricultural modifications of hydrological flows create ecological surprises. Trends in Ecol Evol 23: 211-219.