Paper published in a book (Scientific congresses and symposiums)
Optimized Look-Ahead Trees: Extensions to Large and Continuous Action Spaces
Jung, Tobias; Ernst, Damien; Maes, Francis
2013In Proc. of IEEE Symposium on Adaptive Dynamic Programming and Reinforcement Learning (ADPRL'13)
Peer reviewed
 

Files


Full Text
adprl13_web.pdf
Author postprint (386.54 kB)
Download
Annexes
adprl13_slides.pdf
Publisher postprint (361.82 kB)
Slides from talk
Download

All documents in ORBi are protected by a user license.

Send to



Details



Keywords :
Look-ahead trees; Planning; Optimal Control
Abstract :
[en] This paper studies look-ahead tree based control policies from the viewpoint of online decision making with constraints on the computational budget allowed per decision (expressed as number of calls to the generative model). We consider optimized look-ahead tree (OLT) policies, a recently introduced family of hybrid techniques, which combine the advantages of look-ahead trees (high precision) with the advantages of direct policy search (low online cost) and which are specifically designed for limited online budgets. We present two extensions of the basic OLT algorithm that on the one side allow tackling deterministic optimal control problems with large and continuous action spaces and that on the other side can also help to further reduce the online complexity.
Disciplines :
Computer science
Author, co-author :
Jung, Tobias ;  Université de Liège - ULiège > Dép. d'électric., électron. et informat. (Inst.Montefiore) > Réseaux informatiques
Ernst, Damien  ;  Université de Liège - ULiège > Dép. d'électric., électron. et informat. (Inst.Montefiore) > Smart grids
Maes, Francis;  Katholieke Universiteit Leuven - KUL > Department of Computer Science
Language :
English
Title :
Optimized Look-Ahead Trees: Extensions to Large and Continuous Action Spaces
Publication date :
2013
Event name :
IEEE Symposium on Adaptive Dynamic Programming and Reinforcement Learning (ADPRL'13)
Event date :
from 16-04-2013 to 19-04-2013
Audience :
International
Main work title :
Proc. of IEEE Symposium on Adaptive Dynamic Programming and Reinforcement Learning (ADPRL'13)
Peer reviewed :
Peer reviewed
Available on ORBi :
since 06 February 2013

Statistics


Number of views
71 (9 by ULiège)
Number of downloads
329 (16 by ULiège)

Scopus citations®
 
1
Scopus citations®
without self-citations
1

Bibliography


Similar publications



Contact ORBi