α-Acetal, ω-alkyne poly(ethylene oxide) as a versatile building block for the synthesis of glycoconjugated graft-copolymers suited for targeted drug delivery
[en] α-Acetal, ω-alkyne poly(ethylene oxide) was synthesized as building block of glycoconjugated poly(ε-caprolactone)-graft-poly(ethylene oxide) (PCL-g-PEO) copolymers. The alkyne group is indeed instrumental for the PEGylation of a poly(α-azido-ε-caprolactone-co-ε-caprolactone) copolymer by the Huisgen’s 1,3 dipolar cycloaddition, i.e., a click reaction. Moreover, deprotection of the acetal end-group of the hydrophilic PEO grafts followed by reductive amination of the accordingly formed aldehyde with an aminated sugar is a valuable strategy of glycoconjugation of the graft copolymer, whose micelles are then potential. A model molecule (fluoresceinamine) was first considered in order to optimize the experimental conditions for the reductive amination. These conditions were then extended to the decoration of the graft copolymer micelles with mannose, which is a targeting agent of dendritic cells and macrophages. The bioavailability of the sugar units at the surface of micelles was investigated by surface plasmon resonance (SPR). The same question was addressed to nanoparticles stabilized by the graft copolymer. Enzyme linked lectin assay (ELLA) confirmed the availability of mannose at the nanoparticle surface.
Research Center/Unit :
Center for Education and Research on Macromolecules (CERM)
Disciplines :
Materials science & engineering Chemistry
Author, co-author :
Freichels, Hélène; Université de Liège - ULiège > Department of Chemistry > Center for Education and Research on Macromolecules (CERM)
Alaimo, David ; Université de Liège - ULiège > Department of Chemistry > Center for Education and Research on Macromolecules (CERM)
Auzély-Velty, Rachel; Université Joseph Fourier, Grenoble, France > Institut de Chimie Moléculaire de Grenoble > Centre de Recherches sur les Macromolécules Végétales (CERMAV-CNRS)
Jérôme, Christine ; Université de Liège - ULiège > Department of Chemistry > Center for Education and Research on Macromolecules (CERM)
Language :
English
Title :
α-Acetal, ω-alkyne poly(ethylene oxide) as a versatile building block for the synthesis of glycoconjugated graft-copolymers suited for targeted drug delivery
Publication date :
09 September 2012
Journal title :
Bioconjugate Chemistry
ISSN :
1043-1802
eISSN :
1520-4812
Publisher :
American Chemical Society, Washington, United States - District of Columbia
Nishiyama, N. and Kataoka, K. (2006) Current state, achievements, and future prospects of polymeric micelles as nanocarriers for drug and gene delivery Pharmacol. Ther. 112, 630-648 (Pubitemid 44592613)
Wei, X., Gong, C., Gou, M., Fu, S., Guo, Q., Shi, S., Luo, F., Guo, G., Qiu, L., and Qian, Z. (2009) Biodegradable poly(ε-caprolactone)- poly(ethylene glycol) copolymers as drug delivery system Int. J. Pharm. 381, 1-18
Blanco, E., Kessinger, C. W., Sumer, B. D., and Gao, J. (2009) Multifunctional micellar nanomedicine for cancer therapy Exp. Biol. Med. 234, 123-131
Mahmud, A., Xiong, X.-B., Aliabadi Hamidreza, M., and Lavasanifar, A. (2007) Polymeric micelles for drug targeting J. Drug Target 15, 553-84 (Pubitemid 350031081)
Letchford, K. and Burt, H. (2007) A review of the formation and classification of amphiphilic block copolymer nanoparticulate structures: micelles, nanospheres, nanocapsules and polymersomes Eur. J. Pharm. Biopharm. 65, 259-269 (Pubitemid 46321600)
Jones, M.-C. and Leroux, J.-C. (1999) Polymeric micelles-a new generation of colloidal drug carriers Eur. J. Pharm. Biopharm. 48, 101-111 (Pubitemid 29401986)
Zalipsky, S. and Harris, J. M. (1997) Introduction to chemistry and biological applications of poly(ethylene glycol), in Poly(Ethylene Glycol)-Chemistry and Biological Applications (Harris, J. M. and Zalipsky, S., Eds.) pp 1-13, American Chemical Society, Washington, DC. (Pubitemid 127444755)
Fuhrmann, K., Schulz, J. D., Gauthier, M. A., and Leroux, J.-C. (2012) PEG nanocages as non-sheddable stabilizers for drug nanocrystals ACS Nano 6, 1667-1676
Owens, D. E. and Peppas, N. A. (2006) Opsonization, biodistribution, and pharmacokinetics of polymeric nanoparticles Int. J. Pharm. 307, 93-102 (Pubitemid 41773257)
Stolnik, S., Dunn, S. E., Garnett, M. C., Davies, M. C., Coombes, A. G. A., Taylor, D. C., Irving, M. P., Purkiss, S. C., Tadros, T. F., Davis, S. S., and Illum, L. (1994) Surface modification of poly(lactide- co -glycolide) nanospheres by biodegradable poly(lactide)-poly(ethylene glycol) copolymers Pharm. Res. 11, 1800-1808 (Pubitemid 24377094)
Garinot, M., Fievez, V., Pourcelle, V., Stoffelbach, F., des Rieux, A., Plapied, L., Theate, I., Freichels, H., Jerome, C., Marchand-Brynaert, J., Schneider, Y.-J., and Preat, V. (2007) PEGylated PLGA-based nanoparticles targeting M cells for oral vaccination J. Controlled Release 120, 195-204 (Pubitemid 47061488)
Rieger, J., Freichels, H., Imberty, A., Putaux, J.-L., Delair, T., Jerome, C., and Auzely-Velty, R. (2009) Polyester nanoparticles presenting mannose residues: toward the development of new vaccine delivery systems combining biodegradability and targeting properties Biomacromolecules 10, 651-657
Rieger, J., Passirani, C., Benoit, J. P., Van Butsele, K., Jerome, R., and Jerome, C. (2006) Synthesis of amphiphilic copolymers of poly(ethylene oxide) and poly(ε-caprolactone) with different architectures, and their role in the preparation of stealthy nanoparticles Adv. Funct. Mater. 16, 1506-1514 (Pubitemid 44117339)
Parrish, B., Breitenkamp, R. B., and Emrick, T. (2005) PEG- and peptide-grafted aliphatic polyesters by click chemistry J. Am. Chem. Soc. 127, 7404-7410 (Pubitemid 40746025)
Riva, R., Schmeits, S., Jerome, C., Jerome, R., and Lecomte, P. (2007) Combination of ring-opening polymerization and click chemistry: toward functionalization and grafting of poly(ε-caprolactone) Macromolecules 40, 796-803 (Pubitemid 46383725)
Riva, R., Rieger, J., Jérôme, R., and Lecomte, P. (2006) Heterograft copolymers of poly(ε-caprolactone) prepared by combination of ATRA grafting onto and ATRP grafting from processes J. Polym. Sci., Part A: Polym. Chem. 44, 6015-6024 (Pubitemid 44578957)
Rieger, J., Van Butsele, K., Lecomte, P., Detrembleur, C., Jérôme, R., and Jérôme, C. (2005) Versatile functionalization and grafting of poly(ε-caprolactone) by Michael-type addition Chem. Commun. 274-276
Taniguchi, I., Mayes, A. M., Chan, E. W. L., and Griffith, L. G. (2005) A chemoselective approach to grafting biodegradable polyesters Macromolecules 216-219 (Pubitemid 40184291)
Iha, R. K., Van Horn, B. A., and Wooley, K. L. (2010) Complex, degradable polyester materials via ketoxime ether-based functionalization: amphiphilic, multifunctional graft copolymers and their resulting solution-state aggregates J. Polym. Sci., Part A: Polym. Chem. 48, 3553-3563
Sutton, D., Nasongkla, N., Blanco, E., and Gao, J. (2007) Functionalized micellar systems for cancer targeted drug delivery Pharm. Res. 24, 1029-1046 (Pubitemid 46798882)
Taniguchi, I., Kuhlman, W. A., Mayes, A. M., and Griffith, L. G. (2006) Functional modification of biodegradable polyesters through a chemoselective approach: application to biomaterial surfaces Polym. Int. 55, 1385-1397 (Pubitemid 44823247)
Taniguchi, I., Kuhlman, W. A., Griffith, L. G., and Mayes, A. M. (2006) Functional modification of biodegradable polyester for cell-specific biomaterial surfaces Polym. Prepr. 47, 57-58
Lecomte, P., Riva, R., Jerome, C., and Jerome, R. (2008) Macromolecular engineering of biodegradable polyesters by ring-opening polymerization and Click chemistry Macromol. Rapid Commun. 29, 982-997
Evans, R. A. (2007) The rise of azide-alkyne 1,3-dipolar click cycloaddition and its application to polymer science and surface modification Aust. J. Chem. 60, 384-395 (Pubitemid 46981494)
Rostovtsev, V. V., Green, L. G., Fokin, V. V., and Sharpless, K. B. (2002) A stepwise Huisgen cycloaddition procces: copper(I)-catalized regioselecte ligation of azides and terminal alkynes Angew. Chem., Int. Ed. 41, 2596-2599 (Pubitemid 34803480)
Lallana, E., Fernandez-Trillo, F., Sousa-Herves, A., Riguera, R., and Fernandez-Megia, E. (2012) Click chemistry with polymers, dendrimers, and hydrogels for drug delivery Pharm. Res. 29, 902-921
Suksiriworapong, J., Sripha, K., Kreuter, J. r., and Junyaprasert, V. B. (2010) Investigation of polymer and nanoparticle properties with nicotinic acid and p-aminobenzoic acid grafted on poly(ε-caprolactone)-poly(ethylene glycol)-poly(ε-caprolactone) via click chemistry Bioconjugate Chem. 22, 582-594
Nagy, M., Szöllösi, L., Kéki, S., and Zsuga, M. (2006) Self-assembly study of polydisperse ethylene oxide-based nonionic surfactants Langmuir 23, 1014-1017
Luo, L. B., Tam, J., Maysinger, D., and Eisenberg, A. (2002) Cellular internalization of poly(ethylene oxide)- b -poly(ε-caprolactone) diblock copolymer micelles Bioconjugate Chem. 13, 1259-1265 (Pubitemid 35420018)
McGreal, E. P., Miller, J. L., and Gordon, S. (2005) Ligand recognition by antigen-presenting cell C-type lectin receptors Curr. Opin. Immunol. 17, 18-24 (Pubitemid 40094008)
Chellat, F., Merhi, Y., Moreau, A., and Yahia, L. H. (2005) Therapeutic potential of nanoparticulate systems for macrophage targeting Biomaterials 26, 7260-7275 (Pubitemid 41133578)
Kricheldorf, H. R. and Eggerstedt, S. (1998) Macrocycles. Part 2. Living macrocyclic polymerization of ε-caprolactone with 2,2-dibutyl-2-stanna-1,3- dioxepane as initiator Macromol. Chem. Phys. 199, 283-290 (Pubitemid 128479189)
Lenoir, S., Riva, R., Lou, X., Detrembleur, C., Jérôme, R., and Lecomte, P. (2004) Ring-opening polymerization of α-chloro-ε- caprolactone and chemical modification of poly(α-chloro-ε- caprolactone) by atom transfer radical processes Macromolecules 37, 4055-4061
Pourcelle, V., Freichels, H., Stoffelbach, F., Auzely-Velty, R., Jerome, C., and Marchand-Brynaert, J. (2009) Light induced functionalization of PCL-PEG block copolymers for the covalent immobilization of biomolecules Biomacromolecules 10, 966-974
Lameignere, E., Malinovska, L., Slavikova, M., Duchaud, E., Mitchell, E. P., Varrot, A., Sedo, O., Imberty, A., and Wimmerova, M. (2008) Structural basis for mannose recognition by a lectin from opportunistic bacteria Burkholderia cenocepacia Biochem. J. 411, 307-318 (Pubitemid 351580183)
Vangeyte, P., Gautier, S., and Jérôme, R. (2004) About the methods of preparation of poly(ethylene oxide)- b -poly(ε-caprolactone) nanoparticles in water Analysis by dynamic light scattering Colloids Surf., A: Physiochem. Eng. Aspects 242, 203-211 (Pubitemid 38981591)
Murthy, B. N., Voelcker, N. H., and Jayaraman, N. (2006) Evaluation of a-D-mannopyranoside glycolipid micelles-lectin interaction by surface plasmon resonance method Glycobiology 16, 822-832 (Pubitemid 44390926)
Karlsson, R., Katsamba, P. S., Nordin, H., Pol, E., and Myszka, D. G. (2006) Analyzing a kinetic titration series using affinity biosensors Anal. Biochem. 349, 136-147 (Pubitemid 43129567)
Tang, Y., Mernaugh, R., and Zeng, X. (2006) Nonregeneration protocol for surface plasmon resonance: study of high-affinity interaction with high-density biosensors Anal. Chem. 78, 1841-1848
Trutnau, H. H. (2006) New multi-step kinetics using common affinity biosensors saves time and sample at full access to kinetics and concentration J. Biotechnol. 124, 191-195
Cade, D., Ramus, E., Rinaudo, M., Auzely-Velty, R., Delair, T., and Hamaide, T. (2004) Tailoring of bioresorbable polymers for elaboration of sugar-functionalized nanoparticles Biomacromolecules 5, 922-927 (Pubitemid 38702265)
Nagasaki, Y., Kutsuna, T., Iijima, M., Kato, M., and Kataoka, K. (1995) Formyl-ended heterobifunctional poly(ethylene oxide): synthesis of poly(ethylene oxide) with a formyl group at one end and a hydroxyl group at the other end Bioconjugate Chem. 6, 231-233
Greene, T. W. and Wuts, P. G. M. (1999) Protective Groups in Organic Synthesis, 3rd ed., John Wiley & Sons, Inc.
Rao, H. S. P. and Siva, P. (1994) Facile reduction of azides with sodium-borohydride copper (II) sulfate system Synth. Commun. 24, 549-555 (Pubitemid 24121035)
Fordor, Z., Fodor, A., and Kennedy, J. P. (1992) A GPC method to determine the composition of two component copolymers Polym. Bull. 29, 689-696
Dubois, M., Gilles, K. A., Hamilton, J. K., Rebers, P. A., and Smith, F. (1956) Colorimetric method for determination of sugars and related substances Angew. Chem. 28, 350-356
Freichels, H., Auzély-Velty, R., Lecomte, P., and Jérôme, C. (2012) Easy functionalization of amphiphilic poly(ethylene oxide)-b-poly(ε-caprolactone) copolymer micelles with unprotected sugar: synthesis and recognition by lectins Polym. Chem. 10.1039/c2py00572g
Ting, S. R. S., Chen, G., and Stenzel, M. H. (2010) Synthesis of glycopolymers and their multivalent recognitions with lectins Polym. Chem. 1, 1392-1412
Olson, M. O. J. and Liener, I. E. (1967) Some physical and chemical properties of concanavalin A, the phytohemagglutinin of the jack bean Biochemistry 6, 105-11
Jule, E., Nagasaki, Y., and Kataoka, K. (2003) Lactose-installed poly(ethylene glycol)-poly(D,L-lactide) block copolymer micelles exhibit fast-rate binding and high affinity toward a protein bed simulating a cell Surface. A surface plasmon resonance study Bioconjugate Chem. 14, 177-186 (Pubitemid 36169031)
Dam, T. K. and Brewer, C. F. (2002) Thermodynamic studies of lectin-carbohydrate interactions by isothermal titration calorimetry Chem. Rev. 102, 387-429 (Pubitemid 35381635)
Houseman, B. T. and Mrksich, M. (2002) Model systems for studying polyvalent carbohydrate binding interactions Host-Guest Chemistry 218, 1-44
Mammen, M., Choi, S. K., and Whitesides, G. M. (1998) Polyvalent interactions in biological systems: Implications for design and use of multivalent ligands and inhibitors Angew. Chem., Int. Ed. 37, 2755-2794
Reynolds, M. and Pérez, S. (2011) Thermodynamics and chemical characterization of protein-carbohydrate interactions: The multivalency issue C. R. Chim. 14, 74-95
Becher, P. and Schick, M. J. (1987) Macroemulsions Surfactant Science Series 23, 435-91