Nonlinear Normal Modes; Nonconservative; Finite element method
Abstract :
[en] Linear modal analysis is a mature tool enjoying various applications ranging from bridges to satellites. Nevertheless, modal analysis fails in the presence of nonlinear dynamical phenomena and the development of a practical nonlinear analog of modal analysis is a current research topic. Recently, numerical techniques (e.g., harmonic balance, continuation of periodic solutions) were developed for the computation of nonlinear normal modes (NNMs). Because these methods are limited to conservative systems, the present study targets the computation of NNMs for nonconservative systems. Their definition as invariant manifolds in phase space is considered. Specifically, a new finite element technique is proposed to solve the set of partial differential equations governing the manifold geometry.
Disciplines :
Aerospace & aeronautics engineering
Author, co-author :
Renson, Ludovic ; Université de Liège - ULiège > Département d'aérospatiale et mécanique > Laboratoire de structures et systèmes spatiaux
Kerschen, Gaëtan ; Université de Liège - ULiège > Département d'aérospatiale et mécanique > Laboratoire de structures et systèmes spatiaux
Language :
English
Title :
Nonlinear Normal Modes of Nonconservative Systems
Publication date :
2013
Event name :
International Modal Analysis Conference (IMAC) XXXI
Event organizer :
Society for Experimental Mechanics (SEM)
Event place :
Orange County, United States - California
Event date :
February 2013
Audience :
International
Main work title :
Proceedings of the SEM IMAC XXXI Conference
Funders :
FRIA - Fonds pour la Formation à la Recherche dans l'Industrie et dans l'Agriculture