[en] Despite numerous studies, questions remain about the evolutionary history of Ursidae and additional independent genetic markers were needed to elucidate these ambiguities. For this purpose, we sequenced ten nuclear genes for all the eight extant bear species. By combining these new sequences with those of four other recently published nuclear markers, we provide new insights into the phylogenetic relationships of the Ursidae family members. The hypothesis that the giant panda was the first species to diverge among ursids is definitively confirmed and the precise branching order within the Ursus genus is clarified for the first time. Moreover, our analyses indicate that the American and the Asiatic black bears do not cluster as sister taxa, as had been previously hypothesised. Sun and sloth bears clearly appear as the most basal ursine species but uncertainties about their exact relationships remain. Since our larger dataset did not enable us to clarify this last question, identifying rare genomic changes in bear genomes could be a promising solution for further studies.
Disciplines :
Life sciences: Multidisciplinary, general & others
Author, co-author :
Pagès, Marie ; Institut de Génomique Fonctionnelle de Lyon
Calvignac, Sébastien; Institut de Génomique Fonctionnelle de Lyon
Klein, Catherine; Institut de Génomique Fonctionnelle de Lyon
Paris, Mathilde; Institut de Génomique Fonctionnelle de Lyon
Hughes, Sandrine; Institut de Génomique Fonctionnelle de Lyon
Hänni, Catherine; Institut de Génomique Fonctionnelle de Lyon
Language :
English
Title :
Combined analysis of fourteen nuclear genes refines the Ursidae phylogeny
Publication date :
2008
Journal title :
Molecular Phylogenetics and Evolution
ISSN :
1055-7903
eISSN :
1095-9513
Publisher :
Academic Press, San Diego, United States - California
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
Bardeleben C., Moore R.L., and Wayne R.K. A molecular phylogeny of the Canidae based on six nuclear loci. Mol. Phylogenet. Evol. 37 (2005) 815-831
Chang B.H., and Li W.H. Estimating the intensity of male-driven evolution in rodents by using X-linked and Y-linked Ube 1 genes and pseudogenes. J. Mol. Evol. 40 (1995) 70-77
Davis D. The giant panda: a morphological study of evolutionary mechanisms. Fieldiana. Zool. Mem. 3 (1964) 1-339
Flynn J.J., and Nedbal M.A. Phylogeny of the Carnivora (Mammalia): congruence vs incompatibility among multiple data sets. Mol. Phylogenet. Evol. 9 (1998) 414-426
Fulton T.L., and Strobeck C. Molecular phylogeny of the Arctoidea (Carnivora): effect of missing data on supertree and supermatrix analyses of multiple gene data sets. Mol. Phylogenet. Evol. 41 (2006) 165-181
Gadagkar S.R., Rosenberg M.S., and Kumar S. Inferring species phylogenies from multiple genes: concatenated sequence tree versus consensus gene tree. J. Exp. Zoolog. B Mol. Dev. Evol. 304 (2005) 64-74
Galewski T., Mauffrey J.F., Leite Y.L., Patton J.L., and Douzery E.J. Ecomorphological diversification among South American spiny rats (Rodentia; Echimyidae): a phylogenetic and chronological approach. Mol. Phylogenet. Evol 34 (2005) 601-615
Galtier N., Gouy M., and Gautier C. SEAVIEW and PHYLO_WIN: two graphic tools for sequence alignment and molecular phylogeny. Comput. Appl. Biosci. 12 (1996) 543-548
Guindon S., and Gascuel O. A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst. Biol. 52 (2003) 696-704
Guindon S., Lethiec F., Duroux P., and Gascuel O. PHYML Online-a web server for fast maximum likelihood-based phylogenetic inference. Nucleic Acids Res. 33 (2005) W557-W559
Haldane J.B.S. The mutation rate of the gene for haemophilia, and its segregation ratios in males and females. Ann. Eugen. 13 (1947) 262-271
Hänni C., Laudet V., Stehelin D., and Taberlet P. Tracking the origins of the cave bear (Ursus spelaeus) by mitochondrial DNA sequencing. Proc. Natl. Acad. Sci. USA 91 (1994) 12336-12340
Herreo, S. Compiled by Servheen, C., Herrero, H., Peyton, B. and the IUCN/SSC Bear and Polar Bear Specialist Groups (1999). Introduction, In: Bears: Status Survey and Conservation Action Plan, pp. 1-6. IUCN.
Jeffroy O., Brinkmann H., Delsuc F., and Philippe H. Phylogenomics: the beginning of incongruence?. Trends Genet. 22 (2006) 225-231
Kishino H., and Hasegawa M. Evaluation of the maximum likelihood estimate of the evolutionary tree topologies from DNA sequence data, and the branching order in Hominoidea. J. Mol. Evol. 29 (1989) 170-179
Kurtén B. The Pleistocene Mammals of Europe (1968), Aldine, Chicago, III
Lessells K. More mutations in males. Nature 390 (1997) 236-237
Loreille O., Orlando L., Patou-Mathis M., et al. Ancient DNA analysis reveals divergence of the cave bear, Ursus spelaeus, and brown bear, Ursus arctos, lineages. Curr. Biol. 11 (2001) 200-203
Mayr E. Uncertainty in science: is the giant panda a bear or a raccoon?. Nature 323 (1986) 769-771
Moreira M.A. SRY evolution in Cebidae (Platyrrhini: Primates). J. Mol. Evol. 55 (2002) 92-103
Nishida S., Pastene A.L., Goto M., and Koike H. SRY gene structure and phylogeny in the cetacean species. Mammal Study 28 (2003) 57-66
Nylander J.A., Ronquist F., Huelsenbeck J.P., and Nieves-Aldrey J.L. Bayesian phylogenetic analysis of combined data. Syst. Biol. 53 (2004) 47-67
O'Brien S.J., Nash W.G., Wildt D.E., Bush M.E., and Benveniste R.E. A molecular solution to the riddle of the giant panda's phylogeny. Nature 317 (1985) 140-144
Pagès, M., Maudet, C., Bellemain, E., Taberlet, P., Hughes, S., Hänni, C., submitted for publication. A system for sex-determination from degraded DNA: a useful tool for paleogenetics and conservation genetics of Ursids.
Pecon-Slattery J., and O'Brien S.J. Patterns of Y and X chromosome DNA sequence divergence during the Felidae radiation. Genetics 148 (1998) 1245-1255
Pecon-Slattery J., Pearks Wilkerson A.J., Murphy W.J., and O'Brien S.J. Phylogenetic assessment of introns and SINEs within the Y chromosome using the cat family felidae as a species tree. Mol. Biol. Evol. 21 (2004) 2299-2309
Porter C.A., Goodman M., and Stanhope M.J. Evidence on mammalian phylogeny from sequences of exon 28 of the von Willebrand factor gene. Mol. Phylogenet. Evol. 5 (1996) 89-101
Posada D., and Crandall KA. MODELTEST: testing the model of DNA substitution. Bioinformatics 14 (1998) 817-818
Rambaud A., Drumond A., 2003. Tracer, version v1.2.
Ronquist F., and Huelsenbeck J.P. MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19 (2003) 1572-1574
Shimodaira H., and Hasegawa M. Multiple comparisons of log-likelihoods with applications to phylogenetic inference. Mol. Biol. Evol. 16 (1999) 1114-1116
Springer M.S., Stanhope M.J., Madsen O., and de Jong W.W. Molecules consolidate the placental mammal tree. Trends Ecol. Evol. 19 (2004) 430-438
Stirling I. Bears-majestic creatures of the wild (1993), Rodale Press Emmaus, Pennsylvania
Swofford, D.L., 1998. PAUP*. Phylogenetic Analysis using Parsimony (*and other methods). Version 4. Sinauer Associates, Sunderland, Massachusetts.
Taberlet P., and Bouvet J. Génétique de l'Ours brun des Pyénées (Ursus arctos): premiers résultats. CR Acad. Sci. III. 314 (1992) 15-21
Talbot S.L., and Shields G.F. A phylogeny of the bears (Ursidae) inferred from complete sequences of three mitochondrial genes. Mol. Phylogenet. Evol. 5 (1996) 567-575
Talbot S.L., and Shields G.F. Phylogeography of brown bears (Ursus arctos) of Alaska and paraphyly within the Ursidae. Mol. Phylogenet. Evol. 5 (1996) 477-494
Van Valen L.M. Palaeontological and molecular views of panda phylogeny. Nature 319 (1986) 428
Venta P.J., Brouillette J.A., Yuzbasiyan-Gurkan V., and Brewer G.J. Gene-specific universal mammalian sequence-tagged sites: application to the canine genome. Biochem. Genet. 34 (1996) 321-341
Vrana P.B., Milinkovitch M.C., Powell J.R., and Wheeler W.C. Higher level relationships of the arctoid Carnivora based on sequence data and "total evidence". Mol. Phylogenet. Evol. 3 (1994) 47-58
Waits L.P., Sullivan J., O'Brien S.J., and Ward R.H. Rapid radiation events in the family Ursidae indicated by likelihood phylogenetic estimation from multiple fragments of mtDNA. Mol. Phylogenet. Evol. 13 (1999) 82-92
Wayne R.K., Van Valkenburgh B., and O'Brien S.J. Molecular distance and divergence time in carnivores and primates. Mol. Biol. Evol. 8 (1991) 297-319
Wozencraft W.C. Order Carnivora. In: Wilson D.E., and Reeder D.M. (Eds). Mammal Species of the World: A Taxonomic and Geographic Reference (1993), Smithsonian Institution Press, Washington 279-349
Yu L., Li Q.W., Ryder O.A., and Zhang Y.P. Phylogeny of the bears (Ursidae) based on nuclear and mitochondrial genes. Mol. Phylogenet. Evol. 32 (2004) 480-494
Zhang Y., and Ryder O. Phylogenetic relationships of bears (the Ursidae) inferred from mitochondrial DNA sequences. Mol. Phylogenet. Evol. 3 (1994) 351-359
Similar publications
Sorry the service is unavailable at the moment. Please try again later.
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.