rodent, DNA barcoding, Next Generation Sequencing, Non-invasive samples, Museum samples, Diet
Abstract :
[en] Rodentia are one of the most diverse orders among mammals, with more than 2,000 species currently described. Species assignation based on morphological data alone can present enormous challenges. In this study, we compared the applicability of 100 bp mini-barcodes from cytochrome b and cytochrome c oxidase 1 genes to enable rodent species identification. Based on GenBank sequence datasets of 115 rodent species, a 136 bp fragment of cytochrome b combined with universal rodent primers was selected as the most discriminatory mini-barcode. The efficacy of this new molecular tool was assessed on 946 samples including rodent tissues, feces, museum samples and feces/pellets from predators known to ingest rodents. Utilizing next generation sequencing technologies able to sequence multiple DNAs, 1,140 amplicons were tagged, multiplexed and sequenced together in one single 454 GS-FLX run. Our method was initially validated on a reference sample set including 265 clearly identified rodent tissues, corresponding to 103 different species. Following validation, 85.6% of 555 rodent samples from Europe, Asia and Africa whose species identity was unknown were able to be identified using the BLASTN program and GenBank reference sequences. In addition, our method proved effective even on degraded rodent DNA samples: 91.8% and 75.9% of samples from feces and museum specimens respectively were correctly identified. Finally, we succeeded in determining the diet of 66.7% of the investigated carnivores from their feces and 81.8% of owls from their pellets. Non-rodent species were also identified suggesting that our method is sensitive enough to investigate complete predator diets. This study demonstrates how this molecular identification method combined with high throughput sequencing can open new realms of possibilities in achieving fast, accurate and inexpensive species identification.
Disciplines :
Life sciences: Multidisciplinary, general & others
Author, co-author :
Galan, Maxime; Centre de Biologie pour la Gestion des Populations, INRA
Pagès, Marie ; Université de Liège - ULiège > Département des sciences de la vie > Génétique
Cosson, Jean-François; Centre de Biologie pour la Gestion des Populations, INRA
Language :
English
Title :
Next-Generation Sequencing for Rodent Barcoding: Species Identification from Fresh, Degraded and Environmental Samples
Publication date :
2012
Journal title :
PLoS ONE
eISSN :
1932-6203
Publisher :
Public Library of Science, San Franscisco, United States - California
Volume :
7
Issue :
11
Pages :
e48374
Peer reviewed :
Peer Reviewed verified by ORBi
Name of the research project :
Projet innovant du departement EFPA 2011 - www4.inra.fr/efpa/; CERoPath/ANR 07 BDIV 012 - www.ceropath.org/;
Funders :
INRA - Institut National de la Recherche Agronomique ANR - Agence Nationale de la Recherche F.R.S.-FNRS - Fonds de la Recherche Scientifique
Balakrishnan R, (2005) Species concepts, species boundaries and species identification: a view from the tropics. Syst Biol 54: 689-693.
Hey J, (2009) Why should we care about species? Nature Education 2.
Lefort MC, Boyer S, Worner SP, Armstrong K, (2011) Noninvasive molecular methods to identify live scarab larvae: an example of sympatric pest and nonpest species in New Zealand. Mol Ecol Resour 12: 389-395.
Nagoshi RN, Brambila J, Meagher RL, (2011) Use of DNA barcodes to identify invasive armyworm spodoptera species in Florida. J Insect Sci 11: 154.
Lowenstein JH, Burger J, Jeitner CW, Amato G, Kolokotronis SO, et al. (2010) DNA barcodes reveal species-specific mercury levels in tuna sushi that pose a health risk to consumers. Biol Lett 6: 692-695.
DeSalle R, Amato G, (2004) The expansion of conservation genetics. Nat Rev Genet 5: 702-712.
Rosentreter R, (2004) Sagebrush identification, ecology, and palatability relative to Sage-Grouse. USDA Forest Service Proceedings pp. 1-14.
Palumbi SR, Cipriano F, (1998) Species identification using genetic tools: the value of nuclear and mitochondrial gene sequences in whale conservation. J Hered 89: 459-464.
Bacher S, (2012) Still not enough taxonomists: reply to Joppa et al. Trends Ecol Evol 27: 65-66.
Pimm SL, Russell GJ, Gittleman JL, Brooks TM, (1995) The future of biodiversity. Science 269: 347-350.
Hubert N, Delrieu-Trottin E, Irisson JO, Meyer C, Planes S, (2010) Identifying coral reef fish larvae through DNA barcoding: a test case with the families Acanthuridae and Holocentridae. Mol Phylogenet Evol 55: 1195-1203.
Bunce M, Worthy TH, Ford T, Hoppitt W, Willerslev E, et al. (2003) Extreme reversed sexual size dimorphism in the extinct New Zealand moa Dinornis. Nature 425: 172-175.
Granjon L, Aniskin VM, Volobouev V, Sicard B, (2002) Sand-dwellers in rocky habitats: a new species of Gerbillus (Mammalia: Rodentia) from Mali. J Zool 256: 181-190.
Hsieh HM, Huang LH, Tsai LC, Kuo YC, Meng HH, et al. (2003) Species identification of rhinoceros horns using the cytochrome b gene. Forensic Sci Int 136: 1-11.
Hebert P, Cywinska A, Ball SL, deWaard JR, (2003) Biological identifications through DNA barcodes. Proc R Soc Lond B 270: 313-321.
Teletchea F, (2010) After 7 years and 1000 citations: Comparative assessment of the DNA barcoding and the DNA taxonomy proposals for taxonomists and non-taxonomists. Mitochondrial DNA 21: 206-226.
Harris JD, (2003) Can you bank on GenBank? Trends Ecol Evol 18: 317-319.
Télétchéa F, Bernillon J, Duffraisse M, Laudet V, Hänni C, (2008) Molecular identification of vertebrate species by oligonucleotide microarray in food and forensic samples. J Appl Ecol 45: 967-975.
Bradley R, Baker R, (2001) A test of the genetic species concepts: cytochrome-b sequences and mammals. J Mammal 82: 960-973.
Rubinoff D, Cameron S, Will K, (2006) A genomic perspective on the shortcomings of mitochondrial DNA for "barcoding" identification. J Hered 97: 581-594.
Richly E, Leister D, (2004) NUMTs in sequenced eukaryotic genomes. Mol Biol Evol 21: 1081-1084.
Dubey S, Michaux J, Brunner H, Hutterer R, Vogel P, (2009) False phylogenies on wood mice due to cryptic cytochrome-b pseudogene. Mol Phylogenet Evol 50: 633-641.
Waits LP, Paetkau D, (2005) Noninvasive genetic sampling tools for wildlife biologists: a review of applications and recommendations for accurate data collection. J Wildl Manage 69: 1419-1433.
Hajibabaei M, Shokralla S, Zhou X, Singer GA, Baird DJ, (2011) Environmental barcoding: a next-generation sequencing approach for biomonitoring applications using river benthos. PLoS ONE 6: e17497.
Metzker ML, (2010) Sequencing technologies- the next generation. Nat Rev Genet 11: 31-46.
Hajibabaei M, Singer GA, Clare EL, Hebert PD, (2007) Design and applicability of DNA arrays and DNA barcodes in biodiversity monitoring. BMC Biol 5: 24.
Meusnier I, Singer GA, Landry JF, Hickey DA, Hebert PD, et al. (2008) A universal DNA mini-barcode for biodiversity analysis. BMC Genomics 9: 214.
Taberlet P, Camarra JJ, Griffin S, Uhres E, Hanotte O, et al. (1997) Noninvasive genetic tracking of the endangered Pyrenean brown bear population. Mol Ecol 6: 869-876.
Murphy MA, Waits LP, Kendall KC, (2000) Quantitative evaluation of fecal drying methods for brown bear DNA analysis. Wildl Soc Bull pp. 951-957.
Galan M, Guivier E, Caraux G, Charbonnel N, Cosson JF, (2010) A 454 multiplex sequencing method for rapid and reliable genotyping of highly polymorphic genes in large-scale studies. BMC Genomics 11: 296.
Margulies M, Egholm M, Altman WE, Attiya S, Bader JS, et al. (2005) Genome sequencing in microfabricated high-density picolitre reactors. Nature 437: 376-380.
Musser G, Carleton M (2005) Superfamily Muroidea. In Mammal species of the world. A taxonomic and geographic reference Volume 2. 3rd edition. Edited by: Wilson DE, Reeder DM. Baltimore, Johns Hopkins University. 894-1531.
Lecompte E, Brouat C, Duplantier JM, Galan M, Granjon L, et al. (2005) Molecular identification of four cryptic species of Mastomys (Rodentia, Murinae). Biochem Syst Ecol 33: 681-689.
Ben Faleh A, Cosson J, Tatard C, Ben Othmen A, Said K, et al. (2010) Are there two cryptic species of the lesser jerboa Jaculus jaculus (Rodentia: Dipodidae) in Tunisia? Evidence from molecular, morphometric, and cytogenetic data. Biol J Linn Soc Lond 99: 673-686.
Jenkins PD, Kilpatrick W, Robinson M, Timmins R, (2004) Morphological and molecular investigations of a new family, genus and species of rodent (Mammalia: Rodentia: Hystricognatha) from Lao PDR. System Biodivers 2: 419-454.
Musser G, Smith A, Robinson MF, Lunde D, (2005) Description of a new genus and species of rodent (Murinae, Muridae, Rodentia) from the Khammouan limestone national biodiversity conservation area in Lao PDR. American Museum novitates 3497: 1-31.
Helgen KM, (2005) A new species of murid rodent (genus Mayermys) from South-eastern New Guinea. Mammalian Biology 70: 61-67.
Musser G, Lunde D, Truong Son N, (2006) Description of a new genus and species of rodent (Murinae, Muridae, Rodentia) from the lower karst region of Northeastern Vietnam. American Museum novitates 3571: 1-41.
Meerburg BG, Singleton GR, Kijlstra A, (2009) Rodent-borne diseases and their risks for public health. Crit Rev Microbiol 35: 221-270.
Pagès M, Chaval Y, Herbreteau V, Waengsothorn S, Cosson JF, et al. (2010) Revisiting the taxonomy of the Rattini tribe: a phylogeny-based delimitation of species boundaries. BMC Evol Biol 10: 184.
Meglecz E, Piry S, Desmarais E, Galan M, Gilles A, et al. (2011) SESAME (SEquence Sorter & AMplicon Explorer): genotyping based on high-throughput multiplex amplicon sequencing. Bioinformatics 27: 277-278.
Gilles A, Meglecz E, Pech N, Ferreira S, Malausa T, et al. (2011) Accuracy and quality assessment of 454 GS-FLX Titanium pyrosequencing. BMC Genomics 12: 245.
Lecompte E, Denys C, Granjon L, (2005) Confrontation of morphological and molecular data: the Praomys group (Rodentia, Murinae) as a case of adaptive convergences and morphological stasis. Mol Phylogenet Evol 37: 899-919.
Jaarola M, Martinkova N, Gunduz I, Brunhoff C, Zima J, et al. (2004) Molecular phylogeny of the speciose vole genus Microtus (Arvicolinae, Rodentia) inferred from mitochondrial DNA sequences. Mol Phylogenet Evol 33: 647-663.
Aplin K, Suzuki H, Chinen AA, Chesser T, ten Have J, et al. (2011) Multiple geographic origins of commensalism and complex dispersal history of black rats. PLoS ONE 6: e26357.
Ndiaye A, Bâ K, Aniskin VM, Benazzou T, Chevret P, et al. (2011) Evolutionary systematics and biogeography of endemic gerbils (Rodentia, Muridae) from Morocco: an integrative approach. Zool Scr 41: 11-28.
Nicolas V, Granjon L, Duplantier JM, Cruaud C, Dobigny G, (2009) Phylogeography of spiny mice (genus Acomys, Rodentia: Muridae) from the south-western margin of the Sahara with taxonomic implications. Biol J Linn Soc Lond 98: 26-46.
Haynes S, Jaarola M, Searle JB, (2003) Phylogeography of the common vole (Microtus arvalis) with particular emphasis on the colonization of the Orkney archipelago. Mol Ecol 12: 951-956.
DeWoody JA, Chesser RK, Baker RJ, (1999) A translocated mitochondrial cytochrome b pseudogene in voles (Rodentia: Microtus). J Mol Evol 48: 380-382.
Triant DA, DeWoody JA, (2008) Molecular analyses of mitochondrial pseudogenes within the nuclear genome of arvicoline rodents. Genetica 132: 21-33.
Triant DA, DeWoody JA, (2009) Demography and phylogenetic utility of Numt pseudogenes in the Southern red-backed vole (Myodes gapperi). J Mammal 90: 561-570.
Pagès M, Chevret P, Gros-Balthazard M, Hughes S, Alcover JA, et al. (accepted) Ancient DNA analysis reveals unsuspected phylogenetic affinities between mice and the extinct Malpaisomys insularis (Rodentia, Murinae), an endemic to the Canary Islands. PLoS ONE 7: e31123.
Miraldo A, Hewitt GM, Dear PH, Paulo OS, Emerson BC, (2012) Numts help to reconstruct the demographic history of the ocellated lizard (Lacerta lepida) in a secondary contact zone. Mol Ecol 21: 1005-1018.
Quéré JP, Le Louarn H (2011) Les rongeurs de France. Faunistique et biologie. 3e édition revue et augmentée. Editions Quae, Collection Guide pratique, 312 p.
Michaux JR, Chevret P, Filippucci MG, Macholan M, (2002) Phylogeny of the genus Apodemus with a special emphasis on the subgenus Sylvaemus using the nuclear IRBP gene and two mitochondrial markers: cytochrome b and 12S rRNA. Mol Phylogenet Evol 23: 123-136.
Galewski T, Tilak MK, Sanchez S, Chevret P, Paradis E, et al. (2006) The evolutionary radiation of Arvicolinae rodents (voles and lemmings): relative contribution of nuclear and mitochondrial DNA phylogenies. BMC Evol Biol 6: 80.
Robins J, Hingston M, Matisoo-Smith E, Ross H, (2007) Identifying Rattus species using mitochondrial DNA. Mol Ecol Notes 7: 717-729.
Robins JH, McLenachan PA, Phillips MJ, Craig L, Ross HA, et al. (2008) Dating of divergences within the Rattus genus phylogeny using whole mitochondrial genomes. Mol Phylogenet Evol 49: 460-466.
Rowe KC, Aplin KP, Baverstock PR, Moritz C, (2011) Recent and rapid speciation with limited morphological disparity in the genus Rattus. Syst Biol 60: 188-203.
Rowe KC, Reno ML, Richmond DM, Adkins RM, Steppan SJ, (2008) Pliocene colonization and adaptive radiations in Australia and New Guinea (Sahul): Multilocus systematics of the old endemic rodents (Muroidea: Murinae). Mol Phylogenet Evol 47: 84-101.
Latinne A, Waengsothorn S, Herbreteau V, Michaux J, (2011) Evidence of complex phylogeographic structure for the threatened rodent Leopoldamys neilli, in Southeast Asia. Conserv Genet 12: 1495-1511.
Dobigny G, Lecompte E, Tatard C, Gauthier P, Bâ K, et al. (2008) An update on the taxonomy and geographic distribution of the cryptic species Mastomys kollmannspergeri (Muridae, Murinae) using combined cytogenetic and molecular data. J Zool 276: 368-374.
Lecompte E, Aplin K, Denys C, Catzeflis F, Chades M, et al. (2008) Phylogeny and biogeography of African Murinae based on mitochondrial and nuclear gene sequences, with a new tribal classification of the subfamily. BMC Evol Biol 8: 199.
Colangelo P, Granjon L, Taylor PJ, Corti M, (2007) Evolutionary systematics in African gerbilline rodents of the genus Gerbilliscus: inference from mitochondrial genes. Mol Phylogenet Evol 42: 797-806.
Ducroz JF, Volobouev V, Granjon L, (1998) A molecular perspective on the systematics and evolution of the genus Arvicanthis (Rodentia, Muridae): inferences from complete cytochrome b gene sequences. Mol Phylogenet Evol 10: 104-117.
Chevret P, Dobigny G, (2005) Systematics and evolution of the subfamily Gerbillinae (Mammalia, Rodentia, Muridae). Mol Phylogenet Evol 35: 674-688.
Taberlet P, Waits LP, Luikart G, (1999) Noninvasive genetic sampling: look before you leap. Trends Ecol Evol 14: 323-327.
Köhn W, Wayne RK, (1997) Facts from feces revisited. Trends Ecol Evol 12: 223-227.
Paabo S, Poinar H, Serre D, Jaenicke-Despres V, Hebler J, et al. (2004) Genetic analyses from ancient DNA. Annu Rev Genet 38: 645-679.
Hofreiter M, Jaenicke V, Serre D, Haeseler Av A, Paabo S, (2001) DNA sequences from multiple amplifications reveal artifacts induced by cytosine deamination in ancient DNA. Nucleic Acids Res 29: 4793-4799.
Gilbert MT, Hansen AJ, Willerslev E, Rudbeck L, Barnes I, et al. (2003) Characterization of genetic miscoding lesions caused by postmortem damage. Am J Hum Genet 72: 48-61.
Granjon L, Duplantier JM, (2009) Les rongeurs de l'Afrique sahélo-soudanienne. IRD Editions et Publications scientifiques du Muséum, Collection Faune et Flore Tropicales 43: 215.
Shehzad W, Riaz T, Nawaz MA, Miquel C, Poillot C, et al. (2012) Carnivore diet analysis based on next-generation sequencing: application to the leopard cat (Prionailurus bengalensis) in Pakistan. Mol Ecol 21: 1951-1965.
Granjon L, Bruderer C, Cosson JF, Dia AT, Colas F, (2002) The small mammal community of a coastal site of south-west Mauritania. Afri J Ecol 40: 10-17.
Thiam M, Bâ K, Duplantier JM, (2008) Impacts of climatic changes on small mammal communities in the Sahel (West Africa) as evidenced by owl pellet analysis. Afr Zool 43: 135-143.
Bohmann K, Monadjem A, Lehmkuhl Noer C, Rasmussen M, Zeale MR, et al. (2011) Molecular diet analysis of two african free-tailed bats (Molossidae) using high throughput sequencing. PLoS ONE 6: e21441.
Hall TA, (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symposium Series 41: 95-98.
Tamura K, Petersen D, Petersen N, Stecher G, Nei M, et al. (2011) MEGA5: Molecular Evolutionary Genetics Analysis using Maximum Likelihood, Evolutionary Distance, and Maximum Parsimony Methods. Mol Biol Evol 28: 2731-2739.
Winnepenninckx B, Backeljau T, De Wachter R, (1993) Extraction of high molecular weight DNA from molluscs. Trends Genet 9: 407.
Gilbert MT, Bandelt HJ, Hofreiter M, Barnes I, (2005) Assessing ancient DNA studies. Trends Ecol Evol 20: 541-544.
Huse SM, Huber JA, Morrison HG, Sogin ML, Welch DM, (2007) Accuracy and quality of massively parallel DNA pyrosequencing. Genome Biol 8: R143.
Zhang Z, Schwartz S, Wagner L, Miller W, (2000) A greedy algorithm for aligning DNA sequences. J Comput Biol 7: 203-214.
Piry S, Guivier E, Realini A, Martin JF, (2012) {pipe}SE{pipe}S{pipe}AM{pipe}E{pipe} Barcode: a NGS-oriented software for amplicon characterization - application to species and environmental barcoding. Mol Ecol Resour 12doi:10.1111/j.1755-0998.2012.03171.x.
Stamatakis A, (2006) RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22: 2688-2690.
Lanave C, Preparata G, Saccone C, Serio G, (1984) A new method for calculating evolutionary substitution rates. J Mol Evol 20: 86-93.
Yang Z, (1994) Maximum likelihood phylogenetic estimation from DNA sequences with variable rates over sites: approximate methods. J Mol Evol 39: 306-14.
Stamatakis A, Hoover P, Rougemont J, (2008) A rapid bootstrap algorithm for the RAxML Web servers. Syst Biol 57: 758-771.
Kimura M, (1980) A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16: 111-20.