[en] Steroid hormones act in brain and throughout the body to regulate a variety of functions, including development, reproduction, stress and behavior. Many of these effects of steroid hormones are mediated by their respective receptors, which are members of the steroid/nuclear receptor superfamily of transcriptional activators. A variety of studies in cell lines reveal that nuclear receptor coregulators are critical in modulating steroid receptor-dependent transcription. Thus, in addition to the availability of the hormone and the expression of its receptor, nuclear receptor coregulators are essential for efficient steroid-dependent transactivation of genes. This review will highlight the importance of nuclear receptor coregulators in modulating steroid-dependent gene expression in brain and the regulation of behavior.
Charlier, Thierry ; Université de Liège - ULiège > Département des sciences biomédicales et précliniques > Biologie de la différenciation sexuelle du cerveau
Language :
English
Title :
Who's in charge? Nuclear receptor coactivator and corepressor function in brain and behavior.
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
Adkins E.K., Boop J.J., Koutnik D.L., Morris J.B., and Pnieswski E.E. Further evidence that androgen aromatization is essential for the activation of copulation in male quail. Physiol. Behav. 24 (1980) 441-446
Alland L., Muhle R., Hou Jr. H., Potes J., Chin L., Schreiber-Agus N., and DePinho R.A. Role for N-CoR and histone deacetylase in Sin3-mediated transcriptional repression. Nature 387 (1997) 49-55
Amazit L., Alj Y., Tyagi R.K., Chauchereau A., Loosfelt H., Pichon C., Pantel J., Foulon-Guinchard E., Leclerc P., Milgrom E., and Guiochon-Mantel A. Subcellular localization and mechanisms of nucleocytoplasmic trafficking of steroid receptor coactivator-1. J. Biol. Chem. 278 (2003) 32195-32203
Amir R.E., Van den Veyver I.B., Wan M., Tran C.Q., Francke U., and Zoghbi H.Y. Rett syndrome is caused by mutations in X-linked MECP2, encoding methyl-CpG-binding protein 2. Nat. Genet. 23 (1999) 185-188
An B.S., Selva D.M., Hammond G.L., Rivero-Muller A., Rahman N., and Leung P.C. Steroid receptor coactivator-3 is required for progesterone receptor trans-activation of target genes in response to gonadotropin-releasing hormone treatment of pituitary cells. J. Biol. Chem. 281 (2006) 20817-20824
Anzick S.L., Kononen J., Walker R.L., Azorsa D.O., Tanner M.M., Guan X.Y., Sauter G., Kallioniemi O.P., Trent J.M., and Meltzer P.S. AIB1, a steroid receptor coactivator amplified in breast and ovarian cancer. Science 277 (1997) 965-968
Apostolakis E.M., Ramamurphy M., Zhou D., Onate S., and O'Malley B. Acute disruption of select steroid receptor coactivators prevents reproductive behavior in rats and unmasks genetic adaptation in knockout mice. Mol. Endocrinol. 16 (2002) 1511-1523
Argiolas A. Neuropeptides and sexual behavior. Neurosci. Biobehav. Rev. 23 (1999) 1127-1142
Astapova I., Lee L.J., Morales C., Tauber S., Bilban M., and Hollenberg A.N. The nuclear corepressor, NCoR, regulates thyroid hormone action in vivo. Proc. Natl. Acad. Sci. USA 105 (2008) 19544-19549
Auboeuf D., Dowhan D.H., Kang Y.K., Larkin K., Lee J.W., Berget S.M., and O'Malley B.W. Differential recruitment of nuclear receptor coactivators may determine alternative RNA splice site choice in target genes. Proc. Natl. Acad. Sci. USA 101 (2004) 2270-2274
Auger A.P., Tetel M.J., and McCarthy M.M. Steroid receptor coactivator-1 mediates the development of sex specific brain morphology and behavior. Proc. Natl. Acad. Sci. USA 97 (2000) 7551-7555
Auger C.J., Bentley G.E., Auger A.P., Ramamurthy M., and Ball G.F. Expression of cAMP response element binding protein-binding protein in the song control system and hypothalamus of adult European starlings (Sturnus vulgaris). J. Neuroendocrinol. 14 (2002) 805-813
Auger A.P., Perrot-Sinai T.S., Auger C.J., Ekas L.A., Tetel M.J., and McCarthy M.M. Expression of the nuclear receptor coactivator, cAMP response element-binding protein, is sexually dimorphic and modulates sexual differentiation of neonatal rat brain. Endocrinology 143 (2002) 3009-3016
Balthazart J., and Ball G.F. Topography in the preoptic region: differential regulation of appetitive and consummatory male sexual behaviors. Front. Neuroendocrinol. 28 (2007) 161-178
Berghöfer-Hochheimer Y., Zurek C., Wölfl S., Hemmerich P., and Munder T. L7 protein is a coregulator of vitamin D receptor-retinoid X receptor-mediated transactivation. J. Cell. Biochem. 69 (1998) 1-12
Blaustein J.D., and Mani S.K. Feminine sexual behavior from neuroendocrine and molecular neurobiological perspectives. In: Blaustein J.D. (Ed). Handbook of Neurochemistry and Molecular Neurobiology (2006), Springer, New York 95-150
Blaustein J.D., and Turcotte J.C. Estradiol-induced progestin receptor immunoreactivity is found only in estrogen receptor-immunoreactive cells in guinea pig brain. Neuroendocrinology 49 (1989) 454-461
Bodo C., and Rissman E.F. New roles for estrogen receptor beta in behavior and neuroendocrinology. Front. Neuroendocrinol. 27 (2006) 217-232
Boonyaratanakornkit V., Melvin V., Prendergast P., Altmann M., Ronfani L., Bianchi M.E., Taraseviciene L., Nordeen S.K., Allegretto E.A., and Edwards D.P. High-mobility group chromatin proteins 1 and 2 functionally interact with steroid hormone receptors to enhance their DNA binding in vitro and transcriptional activity in mammalian cells. Mol. Cell. Biol. 18 (1998) 4471-4487
Bousios S., Karandrea D., Kittas C., and Kitraki E. Effects of gender and stress on the regulation of steroid receptor coactivator-1 expression in the rat brain and pituitary. J. Steroid Biochem. Mol. Biol. 78 (2001) 401-407
Boutell J.M., Thomas P., Neal J.W., Weston V.J., Duce J., Harper P.S., and Jones A.L. Aberrant interactions of transcriptional repressor proteins with the Huntington's disease gene product, huntingtin. Hum. Mol. Genet. 8 (1999) 1647-1655
Brady M.E., Ozanne D.M., Gaughan L., Waite I., Cook S., Neal D.E., and Robson C.N. Tip60 is a nuclear hormone receptor coactivator. J. Biol. Chem. 274 (1999) 17599-17604
Camacho-Arroyo I., Neri-Gomez T., Gonzalez-Arenas A., and Guerra-Araiza C. Changes in the content of steroid receptor coactivator-1 and silencing mediator for retinoid and thyroid hormone receptors in the rat brain during the estrous cycle. J. Steroid Biochem. Mol. Biol. 94 (2005) 267-272
Cavarretta I.T.R., Mukopadhyay R., Lonard D.M., Cowsert L.M., Bennet C.F., O'Malley B., and Smith C.L. Reduction of coactivator expression by antisense oligodeoxynucleotides inhibits ERa transcriptional activity and MCF-7 proliferation. Mol. Endocrinol. 16 2 (2002) 253-269
Charlier T.D., Lakaye B., Ball G.F., and Balthazart J. Steroid receptor coactivator SRC-1 exhibits high expression in steroid-sensitive brain areas regulating reproductive behaviors in the quail brain. Neuroendocrinology 76 (2002) 297-315
Charlier T.D., Balthazart J., and Ball G.F. Sex differences in the distribution of the steroid coactivator SRC-1 in the song control nuclei of male and female canaries. Brain Res. 959 (2003) 263-274
Charlier T.D., Ball G.F., and Balthazart J. Inhibition of steroid receptor coactivator-1 blocks estrogen and androgen action on male sex behavior and associated brain plasticity. J. Neurosci. 25 (2005) 906-913
Charlier T.D., Ball G.F., and Balthazart J. Plasticity in the expression of the steroid receptor coactivator-1 in the Japanese quail brain: Effect of sex, testosterone, stress and time of the day. Neuroscience 172 (2006) 333-343
Chauchereau A., Amazit L., Quesne M., Guiochon-Mantel A., and Milgrom E. Sumoylation of the progesterone receptor and of the coactivator SRC-1. J. Biol. Chem. (2003)
Chen J.D., and Evans R.M. A transcriptional co-repressor that interacts with nuclear hormone receptors. Nature 377 (1995) 454-457
Chen H., Lin R.J., Schiltz R.L., Chakravarti D., Nash A., Nagy L., Privalsky M.L., Nakatani Y., and Evans R.M. Nuclear receptor coactivator ACTR is a novel histone acetyltransferase and forms a multimeric activation complex with P/CAF and CBP/p300. Cell 90 (1997) 569-580
Chen H., Lin R.J., Xie W., Wilpitz D., and Evans R.M. Regulation of hormone-induced histone hyperactetylation and gene activation via acetylation of an acetylase. Cell 98 (1999) 675-686
Chen D., Ma H., Hong H., Koh S.S., Huang S.M., Schurter B.T., Aswad D.W., and Stallcup M.R. Regulation of transcription by a protein methyltransferase. Science 284 (1999) 2174-2177
Chen J., Halappanavar S., Th'ng J.P., and Li Q. Ubiquitin-dependent distribution of the transcriptional coactivator p300 in cytoplasmic inclusion bodies. Epigenetics 2 (2007) 92-99
Chevillard-Briet M., Trouche D., and Vandel L. Control of CBP co-activating activity by arginine methylation. EMBO J. 21 (2002) 5457-5466
Chrivia J.C., Kwok R.P., Lamb N., Hagiwara M., Montminy M.R., and Goodman R.H. Phosphorylated CREB binds specifically to the nuclear protein CBP. Nature 365 (1993) 855-859
Cowger J.J., and Torchia J. Direct association between the CREB-binding protein (CBP) and nuclear receptor corepressor (N-CoR). Biochemistry 45 (2006) 13150-13162
Cowley S.M., and Parker M.G. A comparison of transcriptional activation by ER alpha and ER beta. J. Steroid Biochem. Mol. Biol. 69 (1999) 165-175
Cukier H.N., Perez A.M., Collins A.L., Zhou Z., Zoghbi H.Y., and Botas J. Genetic modifiers of MeCP2 function in Drosophila. PLoS. Genet. 4 (2008) e1000179
Cunliffe V.T. Eloquent silence. developmental functions of Class I histone deacetylases. Curr. Opin. Genet. Dev. 18 (2008) 404-410
Delaunay F., Pettersson K., Tujague M., and Gustafsson J.A. Functional differences between the amino-terminal domains of estrogen receptors alpha and beta. Mol. Pharmacol. 58 (2000) 584-590
Dellovade T.L., Zhu Y.S., Krey L., and Pfaff D.W. Thyroid hormone and estrogen interact to regulate behavior. Proc. Natl. Acad. Sci. USA 93 (1996) 12581-12586
Dellovade T.L., Kia H.K., Zhu Y.S., and Pfaff D.W. Thyroid hormone coadministration inhibits the estrogen-stimulated elevation of preproenkephalin mRNA in female rat hypothalamic neurons. Neuroendocrinology 70 (1999) 168-174
DeMarzo A., Beck C.A., Oñate S.A., and Edwards D.P. Dimerization of mammalian progesterone receptors occurs in the absence of DNA and is related to the release of the 90-kDa heat shock protein. Proc. Natl. Acad. Sci. USA 88 (1991) 72-76
Dindot S.V., Antalffy B.A., Bhattacharjee M.B., and Beaudet A.L. The Angelman syndrome ubiquitin ligase localizes to the synapse and nucleus, and maternal deficiency results in abnormal dendritic spine morphology. Hum. Mol. Genet. 17 (2008) 111-118
Dohler K.D., Srivastava S.S., Shryne J.E., Jarzab B., Sipos A., and Gorski R.A. Differentiation of the sexually dimorphic nucleus in the preoptic area of the rat brain is inhibited by postnatal treatment with an estrogen antagonist. Neuroendocrinology 38 (1984) 297-301
Duncan K.A., and Carruth L.L. The sexually dimorphic expression of L7/SPA, an estrogen receptor coactivator, in zebra finch telencephalon. Dev. Neurobiol. 67 (2007) 1852-1866
Duncan K.A., Clancy A.N., and Carruth L.L. Hormonal Regulation of Estrogen Receptor Coactivators in Adult Male Zebra Finches (2008), Society of Neuroscience, Washington DC pp. 47-48
Dutertre M., and Smith C.L. Ligand-independent interactions of p160/steroid receptor coactivators and CREB-binding protein (CBP) with estrogen receptor-alpha: regulation by phosphorylation sites in the A/B region depends on other receptor domains. Mol. Endocrinol. 17 (2003) 1296-1314
Dutertre M., and Smith C.L. Ligand-independent interactions of p160/steroid receptor coactivators and CREB-binding protein (CBP) with estrogen receptor- à: regulation by phosphorylation sites in the A/B region depends on other receptor domains. Mol. Endocrinol. 17 (2003) 1296-1314
Edwards D.A., and Pfeifle J.K. Hormonal control of receptivity, proceptivity and sexual motivation. Physiol. Behav. 30 (1983) 437-443
Erskine M.S. Solicitation behavior in the estrous female rat: a review. Horm. Behav. 23 (1989) 473-502
Fernandez-Valdivia R., Mukherjee A., Amato P., Allred D.C., Nguyen J., DeMayo F.J., and Lydon J.P. Progesterone-action in the murine uterus and mammary gland requires steroid receptor coactivator 2: relevance to the human. Front. Biosci. 12 (2007) 3640-3647
Foradori C.D., Weiser M.J., and Handa R.J. Non-genomic actions of androgens. Front. Neuroendocrinol. 29 (2008) 169-181
Frasor J., Danes J.M., Funk C.C., and Katzenellenbogen B.S. Estrogen down-regulation of the corepressor N-CoR: mechanism and implications for estrogen derepression of N-CoR-regulated genes. Proc. Natl. Acad. Sci. USA 102 (2005) 13153-13157
Fugger H.N., Foster T.C., Gustafsson J., and Rissman E.F. Novel effects of estradiol and estrogen receptor alpha and beta on cognitive function. Brain Res. 883 (2000) 258-264
Galeeva A., Treuter E., Tuohimaa P., and Pelto-Huikko M. Comparative distribution of the mammalian mediator subunit thyroid hormone receptor-associated protein (TRAP220) mRNA in developing and adult rodent brain. Eur. J. Neurosci. 16 (2002) 671-683
Gao X., Mohsin S.K., Gatalica Z., Fu G., Sharma P., and Nawaz Z. Decreased expression of e6-associated protein in breast and prostate carcinomas. Endocrinology 146 (2005) 1707-1712
Gehin M., Mark M., Dennefeld C., Dierich A., Gronemeyer H., and Chambon P. The function of TIF2/GRIP1 in mouse reproduction is distinct from those of SRC-1 and p/CIP. Mol. Cell. Biol. 22 (2002) 5923-5937
Giangrande P.H., Pollio G., and McDonnell D.P. Mapping and characterization of the functional domains responsible for the differential activity of the A and B isoforms of the human progesterone receptor. J. Biol. Chem. 272 (1997) 32889-32900
Greco B., Allegretto E.A., Tetel M.J., and Blaustein J.D. Coexpression of ER beta with ER alpha and progestin receptor proteins in the female rat forebrain: effects of estradiol treatment. Endocrinology 142 (2001) 5172-5181
Grenier J., Trousson A., Chauchereau A., Cartaud J., Schumacher M., and Massaad C. Differential recruitment of p160 coactivators by glucocorticoid receptor between Schwann cells and astrocytes. Mol. Endocrinol. 20 (2006) 254-267
Han S.J., Demayo F.J., Xu J., Tsai S.Y., Tsai M.J., and O'Malley B.W. Steroid receptor coactivator (SRC)-1 and SRC-3 differentially modulate tissue-specific activation functions of the progesterone receptor. Mol. Endocrinol. 20 (2006) 45-55
Hardy D.F., and DeBold J.F. The relationship between levels of exogenous hormones and the display of lordosis by the female rat. Horm. Behav. 2 (1971) 287-297
Heinzel T., Lavinsky R.M., Mullen T.M., Soderstrom M., Laherty C.D., Torchia J., Yang W.M., Brard G., Ngo S.D., Davie J.R., Seto E., Eisenman R.N., Rose D.W., Glass C.K., and Rosenfeld M.G. A complex containing N-CoR, mSin3 and histone deacetylase mediates transcriptional repression. Nature 387 (1997) 43-48
Hemmerich P., von Mikecz A., Neumann F., Sözeri O., Wolff-Vorbeck G., Zoebelein R., and Krawinkel U. Structural and functional properties of ribosomal protein L7 from humans and rodents. Nucleic Acid Res. 21 (1993) 223-231
Hermanson O., Jepsen K., and Rosenfeld M.G. N-CoR controls differentiation of neural stem cells into astrocytes. Nature 419 (2002) 934-939
Higashimoto K., Kuhn P., Desai D., Cheng X., and Xu W. Phosphorylation-mediated inactivation of coactivator-associated arginine methyltransferase 1. Proc. Natl. Acad. Sci. USA 104 (2007) 12318-12323
Hlaing M., Nam K., Lou J., Pope W.F., and Nephew K.P. Evidence for expression of estrogen receptor cofactor messenger ribonucleic acid in the ovary and uterus of domesticated animals (sheep, cow, and pig). Life Sci. 68 (2001) 1427-1438
Hoang T., Fenne I.S., Cook C., Børud B., Bakke M., Lien E.A., and Mellgren G. cAMP-dependent protein kinase regulates ubiquitin-proteasome-mediated degradation and subcellular localization of the nuclear receptor coactivator GRIP1. J. Biol. Chem. 279 (2004) 49120-49130
Hong H., Kohli K., Garabedian M.J., and Stallcup M.R. GRIP1, a transcriptional coactivator for the AF-2 transactivation domain of steroid, thyroid, retinoid, and vitamin D receptors. Mol. Cell. Biol. 17 (1997) 2735-2744
Horlein A.J., Naar A.M., Heinzel T., Torchia J., Gloss B., Kurokawa R., Ryan A., Kamei Y., Soderstrom M., Glass C.K., et al. Ligand-independent repression by the thyroid hormone receptor mediated by a nuclear receptor co-repressor. Nature 377 (1995) 397-404
Huibregtse J.M., Scheffner M., and Howley P.M. A cellular protein mediates association of p53 with E6 oncoprotein of human paillomavirus types 16 ort 18. EMBO J. 10 (1991) 4129-4135
Huibregtse J.M., Scheffner M., and Howley M. Cloning and expression of the cDNA for E6-AP, a protein that mediates the interaction of thehuman papillomavirus E6 oncoprotein with p53. Mol. Cell. Biol. 13 (1993) 775-784
Iannacone E.A., Yan A.W., Gauger K.J., Dowling A.L.S., and Zoeller R.T. Thyroid hormone exerts site-specific effects on SRC-1 and NCoR expression selectively in the neonatal rat brain. Mol. Cell. Endocrinol. 186 (2002) 49-59
Isgor C., Cecchi M., Kabbaj M., Akil H., and Watson S.J. Estrogen receptor beta in the paraventricular nucleus of hypothalamus regulates the neuroendocrine response to stress and is regulated by corticosterone. Neuroscience 121 (2003) 837-845
Ito M., Yuan C.X., Malik S., Gu W., Fondell J.D., Yamamura S., Fu Z.Y., Zhang X., Qin J., and Roeder R.G. Identity between TRAP and SMCC complexes indicates novel pathways for the function of nuclear receptors and diverse mammalian activators. Mol. Cell 3 (1999) 361-370
Jackson T.A., Richer J.K., Bain D.L., Takimoto G.S., Tung L., and Horwitz K.B. The partial agonist activity of antagonist-occupied steroid receptors is controlled by a novel hinge domain-binding coactivator L7/SPA and the corepressors N-CoR or SMRT. Mol. Endocrinol. 11 (1997) 693-705
Jensen E.V., Suzuki T., Kawasima T., Stumpf W.E., Jungblut P.W., and De Sombre E.R. A two-step mechanism for the interaction of estradiol with rat uterus. Proc. Natl. Acad. Sci. USA 59 (1968) 632-638
Jeong J.W., Lee K.Y., Han S.J., Aronow B.J., Lydon J.P., O'Malley B.W., and Demayo F.J. The p160 steroid receptor coactivator-2, SRC-2, regulates murine endometrial function and regulates progesterone-independent and -dependent gene expression. Endocrinology 148 (2007) 4238-4250
Jepsen K., Hermanson O., Onami T.M., Gleiberman A.S., Lunyak V., McEvilly R.J., Kurokawa R., Kumar V., Liu F., Seto E., Hedrick S.M., Mandel G., Glass C.K., Rose D.W., and Rosenfeld M.G. Combinatorial roles of the nuclear receptor corepressor in transcription and development. Cell 102 (2000) 753-763
Kalkhoven E., Valentine J.E., Heery D.M., and Parker M.G. Isoforms of steroid receptor co-activator 1 differ in their ability to potentiate transcription by the oestrogen receptor. EMBO J. 17 (1998) 232-243
Kamei Y., Xu L., Heinzel T., Torchia J., Kurokawa R., Gloss B., Lin S.C., Heyman R.A., Rose D.W., Glass C.K., and Rosenfeld M.G. A CBP integrator complex mediates transcriptional activation and AP-1 inhibition by nuclear receptors. Cell 85 (1996) 403-414
Karagianni P., and Wong J. HDAC3: taking the SMRT-N-CoRrect road to repression. Oncogene 26 (2007) 5439-5449
Kastner P., Krust A., Turcotte B., Stropp U., Tora L., Gronemeyer H., and Chambon P. Two distinct estrogen-regulated promoters generate transcripts encoding the two functionally different human progesterone receptor forms A and B. EMBO J. 9 (1990) 1603-1614
Kelly M.J., and Ronnekleiv O.K. Membrane-initiated estrogen signaling in hypothalamic neurons. Mol. Cell. Endocrinol. 290 (2008) 14-23
Khan O.Y., Fu G., Ismail A., Srinivasan S., Cao X., Tu Y., Lu S., and Nawaz Z. Multifunction steroid receptor coactivator, E6-associated protein, is involved in the development of the prostate gland. Mol. Endocrinol. 20 (2006) 544-559
Kininis M., Chen B.S., Diehl A.G., Isaacs G.D., Zhang T., Siepel A.C., Clark A.G., and Kraus W.L. Genomic analyses of transcription factor binding, histone acetylation, and gene expression reveal mechanistically distinct classes of estrogen-regulated promoters. Mol. Cell. Biol. 27 (2007) 5090-5104
Klein-Hitpass L., Tsai S.Y., Weigel N.L., Allan G.F., Riley D., Rodriguez R., Schrader W.T., Tsai M.J., and O'Malley B.W. The progesterone receptor stimulates cell-free transcription by enhancing the formation of a stable preinitiation complex. Cell 60 (1990) 247-257
Klose R.J., and Bird A.P. Genomic DNA methylation: the mark and its mediators. Trends Biochem. Sci. 31 (2006) 89-97
Kobayashi Y., Kitamoto T., Masuhiro Y., Watanabe M., Kase T., Metzger D., Yanagisawa J., and Kato S. p300 mediates functional synergism between AF-1 and AF-2 of estrogen receptor alpha and beta by interacting directly with the N-terminal A/B domains. J. Biol. Chem. 19 275 (2000) 15645-15651
Kotaja N., Karvonen U., Janne O.A., and O'Malley B.W. The nuclear receptor interacting domain of GRIP1 is modulated by covalent attachment of SUMO-1. J. Biol. Chem. 277 (2002) 30283-30288
Kriegsfeld L.J., LeSauter J., Hamada T., Pitts S.M., and Silver R. Circadian rhythms in the endocrine system. In: Pfaff D.W., Arnold A.P., Fahrbach S.E., Etgen A.M., and Rubin B.S. (Eds). Hormones, Brain and Behavior (2002), Elsevier 33-91
Kudwa A.E., and Rissman E.F. Double oestrogen receptor alpha and beta knockout mice reveal differences in neural oestrogen-mediated progestin receptor induction and female sexual behaviour. J. Neuroendocrinol. 15 (2003) 978-983
Kuiper G.G.J.M., Enmark E., Pelto-Huikko M., Nilsson S., and Gustafsson J. Cloning of a novel estrogen receptor expressed in rat prostate and ovary. Proc. Natl. Acad. Sci. USA 93 (1996) 5925-5930
Kuiper G.G.J.M., Carlsson B., Grandien K., Enmark E., Häggblad J., Nilsson S., and Gustafsson J. Comparison of the ligand binding specificity and transcript tissue distribution of estrogen receptors alpha and beta. Endocrinology 138 (1997) 863-870
Kurihara I., Shibata H., Suzuki T., Ando T., Kobayashi S., Hayashi M., saito I., and Saruta T. Expression and regulation of nuclear receptor coactivators in glucocorticoid action. Mol. Cell. Endocrinol. 189 (2002) 181-189
Kwok R.P.S., Lundblad J.R., Chrivia J.C., Richards J.P., Bachinger H.P., Brennan R.G., Roberts S.G.E., Green M.R., and Goodman R.H. Nuclear protein CBP is a coactivator for the transcription factor CREB. Nature 370 (1994) 223-229
Lanz R.B., McKenna N.J., Oñate S.A., Albrecht U., Wong J., Tsai S.Y., Tsai M.J., and O'Malley B.W. A steroid receptor coactivator, SRA, functions as an RNA and is present in an SRC-1 complex. Cell 97 (1999) 17-27
Lanz R.B., Chua S.S., Barron N., Soder B.M., DeMayo F., and O'Malley B.W. Steroid receptor RNA activator stimulates proliferation as well as apoptosis in vivo. Mol. Cell. Biol. 23 (2003) 7163-7176
Lanz R.B., Lonard D.M., and O'Malley B.W. Nuclear receptor coregulators in human diseases. In: Kumar R., and O'Malley B.W. (Eds). Nuclear Receptor Coregulators and Human Diseases (2008), World Scientific Books 1-133
Li H., Gomes P.J., and Chen J.D. RAC3, a steroid/nuclear receptor-associated coactivator that is related to SRC-1 and TIF2. Proc. Natl. Acad. Sci. USA 94 (1997) 8479-8484
Li G.Y., Heaton J.H., and Gelehrter T.D. Role of steroid receptor coactivators in glucocorticoid and transforming growth factor B regulation of plasminogen activator inhibitor gene expression. Mol. Endocrinol. 20 (2006) 1025-1034
Liu Z., Wong J., Tsai S.Y., Tsai M.J., and O'Malley B.W. Sequential recruitment of steroid receptor coactivator-1 (SRC-1) and p300 enhances progesterone receptor-dependent initiation and reinitiation of transcription from chromatin. Proc. Natl. Acad. Sci. USA 98 (2001) 12426-12431
Lonard D.M., and O'Malley B.W. Expanding functional diversity of the coactivators. Trends Biochem. Sci. 30 (2005) 126-132
Lonard D.M., and O'Malley B.W. The expanding cosmos of nuclear receptor coactivators. Cell 125 (2006) 411-414
Lonard D.M., Lanz R.B., and O'Malley B.W. Nuclear receptor coregulators and human disease. Endocr. Rev. 28 (2007) 575-587
Mackie S., Millar J.K., and Porteous D.J. Role of DISC1 in neural development and schizophrenia. Curr. Opin. Neurobiol. 17 (2007) 95-102
Maden M. Retinoid signaling of the central nervous system. Nat. Rev. Neurosci. 3 (2002) 843-853
Maerkel K., Durrer S., Henseler M., Schlumpf M., and Lichtensteiger W. Sexually dimorphic gene regulation in brain as a target for endocrine disrupters: developmental exposure of rats to 4-methylbenzylidene camphor. Toxicol. Appl. Pharmacol. 218 (2007) 152-165
Mangelsdorf D.J., Thummel C., Beato M., Herrlich P., Schütz G., Umesono K., Blumberg B., Kastner P., Mark M., Chambon P., and Evans R.M. The nuclear receptor superfamily: the second decade. Cell 83 (1995) 835-839
Mani S.K. Mini review: progestin receptor subtypes in the brain: the known and the unknown. Endocrinology 149 (2008) 2750-2756
Mani S.K., Reyna A.M., Chen J.Z., Mulac-Jericevic B., and Conneely O.M. Differential response of progesterone receptor isoforms in hormone-dependent and -independent facilitation of female sexual receptivity. Mol. Endocrinol. 20 (2006) 1322-1332
Mani A., Oh A.S., Bowden E.T., Lahusen T., Lorick K.L., Weissman A.M., Schlegel R., Wellstein A., and Riegel A.T. E6AP mediates regulated proteosomal degradation of the nulcear receptor coactivator amplified in breast cancer 1 in imortalized cells. Cancer Res. 66 (2006) 8680-8686
Margeat E., Poujol N., Boulahtouf A., Chen Y., Muller J.D., Gratton E., Cavailles V., and Royer C.A. The human estrogen receptor alpha dimer binds a single SRC-1 coactivator molecule with an affinity dictated by agonist structure. J. Mol. Biol. 306 (2001) 433-442
Martinez de Arrieta C., Koibuchi N., and Chin W.W. Coactivator and corepressor gene expression in rat cerebellum during postnatal development and the effect of altered thyroid status. Endocrinology 141 (2000) 1693-1698
McCarthy M.M., Schlenker E.H., and Pfaff D.W. Enduring consequences of neonatal treatment with antisense oligodeoxynucleotides to estrogen receptor messenger ribonucleic acid on sexual differentiation of rat brain. Endocrinology 133 (1993) 433-439
McGinnis M.Y., Lumia A.R., Tetel M.J., Molenda-Figuiera H.A., and Possidente B. Effects of anabolic androgenic steroids on the development and expression of running wheel activity and circadian rhythms in male rats. Physiol. Behav. 92 (2007) 1010-1018
McGrath J.J., Féron F.P., Burne T.H., Mackay-Sim A., and Eyles D.W. Vitamin D3-Implications for brain development. J. Steroid. Biochem. Mol. Biol. 89-90 (2004) 557-560
McInerney E.M., Tsai M.J., O'Malley B.W., and Katzenellenbogen B.S. Analysis of estrogen receptor transcriptional enhancement by a nuclear hormone receptor coactivator. Proc. Natl. Acad. Sci. USA 93 (1996) 10069-10073
McKenna N.J., and O'Malley B.W. Combinatorial control of gene expression by nuclear receptors and coregulators. Cell 108 (2002) 465-474
McKenna N.J., Nawaz Z., Tsai S.Y., Tsai M.J., and O'Malley B.W. Distinct steady-state nuclear receptor coregulator complexes exist in vivo. Proc. Natl. Acad. Sci. USA 95 (1998) 11697-11702
McKenna N.J., Lanz R.B., and O'Malley B.W. Nuclear receptor coregulators: cellular and molecular biology. Endocr. Rev. 20 (1999) 321-344
Meijer O.C., and Steenbergen P.J. And E.R. de Kloet, Differential expression and regional distribution of steroid receptor coactivators SRC-1 and SRC-2 in brain and pituitary. Endocrinology 141 (2000) 2192-2199
Meijer O.C., Kalkhoven E., van der L.S., Steenbergen P.J., Houtman S.H., Dijkmans T.F., Pearce D., and de Kloet E.R. Steroid receptor coactivator-1 splice variants differentially affect corticosteroid receptor signaling. Endocrinology 146 (2005) 1438-1448
Meyer M.E., Gronemeyer H., Bocquel B., Bocquel M.T., Tasset D., and Chambon P. Steroid hormone receptors compete for factors that mediate their enhancer function. Cell 57 (1989) 433-442
Meyuhas O., and Klein A. The mouse ribosomal protein L7 gene, its primary structure and functional analysis of the promoter region. J. Biol. Chem. 265 (1990) 11465-11473
Micevych P.E., and Mermelstein P.G. Membrane estrogen receptors acting through metabotropic glutamate receptors: An emerging mechanism of estrogen action in brain. Mol. Neurobiol. 38 (2008) 66-77
Misiti S., Schomburg L., Yen P.M., and Chin W.W. Expression and hormonal regulation of coactivator and corepressor genes. Endocrinology 139 (1998) 2493-2500
Misiti S., Koibuchi N., Bei M., Farsetti A., and Chin W.W. Expression of steroid receptor coactivator-1 mRNA in the developing mouse embryo: a possible role in olfactory epithelium development. Endocrinology 140 (1999) 1957-1960
Mitev Y.A., Wolf S.S., Almeida O.F., and Patchev V.K. Developmental expression profiles and distinct regional estrogen responsiveness suggest a novel role for the steroid receptor coactivator SRC-l as a discriminative amplifier of estrogen signaling in the rat brain. FASEB J. 17 (2003) 518-519
Mitra S.W., Hoskin E., Yudkovitz J., Pear L., Wilkinson H.A., Hayashi S., Pfaff D.W., Ogawa S., Rohrer S.P., Schaeffer J.M., McEwen B.S., and Alves S.E. Immunolocalization of estrogen receptor beta in the mouse brain: comparison with estrogen receptor alpha. Endocrinology 144 (2003) 2055-2067
Molenda H.A., Griffin A.L., Auger A.P., McCarthy M.M., and Tetel M.J. Nuclear receptor coactivators modulate hormone-dependent gene expression in brain and female reproductive behavior in rats. Endocrinology 143 (2002) 436-444
Molenda-Figueira H.A., Williams C.A., Griffin A.L., Rutledge E.M., Blaustein J.D., and Tetel M.J. Nuclear receptor coactivators function in estrogen receptor- and progestin receptor-dependent aspects of sexual behavior in female rats. Horm. Behav. 50 (2006) 383-392
Mong J.A., Kurzweil R.L., Davis A.M., Rocca M.S., and McCarthy M.M. Evidence for sexual differentiation of glia in rat brain. Horm. Behav. 30 (1996) 553-562
Monroe D.G., Johnsen S.A., Subramaniam M., Getz B.J., Khosla S., Riggs B.L., and Spelsberg T.C. Mutual antagonism of estrogen receptors alpha and beta and their preferred interactions with steroid receptor coactivators in human osteoblastic cell lines. J. Endocrinol. 176 (2003) 349-357
Mukherjee A., Soyal S.M., Fernandez-Valdivia R., Gehin M., Chambon P., Demayo F.J., Lydon J.P., and O'Malley B.W. Steroid receptor coactivator 2 is critical for progesterone-dependent uterine function and mammary morphogenesis in the mouse. Mol. Cell. Biol. 26 (2006) 6571-6583
Mukherjee A., Amato P., Allred D.C., DeMayo F.J., and Lydon J.P. Steroid receptor coactivator 2 is required for female fertility and mammary morphogenesis: insights from the mouse, relevance to the human. Nucl. Recept. Signal 5 (2007) e011
Mulac-Jericevic B., and Conneely O.M. Reproductive tissue selective actions of progesterone receptors. Reproduction 128 (2004) 139-146
Musatov S., Chen W., Pfaff D.W., Kaplitt M.G., and Ogawa S. RNAi-mediated silencing of estrogen receptor alpha in the ventromedial nucleus of hypothalamus abolishes female sexual behaviors. Proc. Natl. Acad. Sci. USA 103 (2006) 10456-10460
Nagy L., Kao H.Y., Chakravarti D., Lin R.J., Hassig C.A., Ayer D.E., Schreiber S.L., and Evans R.M. Nuclear receptor repression mediated by a complex containing SMRT, mSin3A, and histone deacetylase. Cell 89 (1997) 373-380
Nawaz Z., Lonard D.M., Smith C.L., Lev-Lehman E., Tsai S.Y., Tsai M.J., and O'Malley B.W. The Angelman syndrome-associated protein, E6-AP, is a coactivator for the nuclear hormone receptor superfamily. Mol. Cell. Biol. 19 (1999) 1182-1189
Nephew K.P., Ray S., Hlaing M., Ahluwalia A., Wu S.D., Long X., Hyder S.M., and Bigsby R.M. Expression of estrogen receptor coactivators in the rat uterus. Biol. Reprod. 63 (2000) 361-367
Neumann F., Hemmerich P., von Mikecz A., Peter H., H., and Krawinkel U. Human ribosomal protein L7 inhibits cell-free translation in reticulocyte lysates and affects the expression of nuclear proteins upon transfection in Jurkat T-lymphoma. Nucleic Acids Res. 23 (1995) 195-202
Nishihara E., Yoshida-Kimoya H., Chan C., Liao L., Davis R.L., O'Malley B.W., and Xu J. SRC-1 null mice exhibit moderate motor dysfunction and delayed development of cerebellar Purkinje cells. J. Neurosci. 23 (2003) 213-222
Nishihara E., O'Malley B.W., and Xu J. Nuclear receptor coregulators are new players in nervous system development and function. Mol. Neurobiol. 30 (2004) 307-325
Nuber U., Schwarz S.E., and Scheffner M. The ubiquitin-protein ligase E6-associated protein (E6-AP) serves as its own substrate. Eur. J. Biochem. 254 (1998) 643-649
Ogawa S., Olazabal U.E., Parhar I.S., and Pfaff D.W. Effects of intrahypothalamic administration of antisense DNA for progesterone receptor mRNA on reproductive behavior and progesterone receptor immunoreactivity in female rat. J. Neurosci. 14 (1994) 1766-1774
Ogawa S., Eng V., Taylor J., Lubahn D.B., Korach K.S., and Pfaff D.W. Roles of estrogen receptor-alpha gene expression in reproduction-related behaviors in female mice. Endocrinology 139 (1998) 5070-5081
Ogawa S., Chan J., Chester A.E., Gustafsson J.A., Korach K.S., and Pfaff D.W. Survival of reproductive behaviors in estrogen receptor beta gene- deficient (betaERKO) male and female mice. Proc. Natl. Acad. Sci. USA 96 (1999) 12887-12892
Ogawa H., Nishi M., and Kawata M. Localization of nuclear coactivators p300 and steroid receptor coactivator 1 in the rat hippocampus. Brain Res. 890 (2001) 197-202
Oike Y., Hata A., Mamiya T., Kaname T., Noda Y., Suzuki M., Yasue H., Nabeshima T., Araki K., and Yamamura K. Truncated CBP protein leads to classical Rubinstein-Taybi syndrome phenotypes in mice. implications for a dominant-negative mechanism. Hum. Mol. Genet. 8 (1999) 387-396
Olesen K.M., Jessen H.M., Auger C.J., and Auger A.P. Dopaminergic activation of estrogen receptors in neonatal brain alters progestin receptor expression and juvenile social play behavior. Endocrinology 146 (2005) 3705-3712
O'Malley B.W. Molecular biology. Little molecules with big goals. Science 313 (2006) 1749-1750
O'Malley B.W. Coregulators: from whence came these "master genes". Mol. Endocrinol. 21 (2007) 1009-1013
O'Malley B.W., and McKenna N.J. Editorial: coactivators and corepressors: what's in a name?. Mol. Endocrinol. 22 (2008) 2213-2214
Oñate S.A., Tsai S.Y., Tsai M.J., and O'Malley B.W. Sequence and characterization of a coactivator for the steroid hormone receptor superfamily. Science 270 (1995) 1354-1357
Oñate S.A., Boonyaratanakornkit V., Spencer T.E., Tsai S.Y., Tsai M.J., Edwards D.P., and O'Malley B.W. The steroid receptor coactivator-1 contains multiple receptor interacting and activation domains that cooperatively enhance the activation function 1 (AF1) and AF2 domains of steroid receptors. J. Biol. Chem. 273 (1998) 12101-12108
Osterlund M., Kuiper G.G., Gustafsson J.A., and Hurd Y.L. Differential distribution and regulation of estrogen receptor-alpha and -beta mRNA within the female rat brain. Brain Res. Mol. Brain. Res. 54 (1998) 175-180
Panzica G.C., Viglietti-Panzica C., and Balthazart J. The sexually dimorphic medial preoptic nucleus of quail: a key brain area mediating steroid action on male sexual behavior. Front. Neuroendocrinol. 17 (1996) 51-125
Panzica G., Aste N., Castagna C., Viglietti-Panzica C., and Balthazart J. Steroid -induced plasticity in the sexually dimorphic vasotocinergic innervation of the avian brain: behavioral implications. Brain Res. Rev. 37 (2001) 178-200
Pendergast B.J., Nelson R.J., and Zucker I. Mammalian seasonal rhythms: behavior and neuroendocrine substrates. In: Pfaff D.W., Arnold A.P., Fahrbach S.E., Etgen A.M., and Rubin B.S. (Eds). Hormones, Brain and Behavior (2002), Elsevier 93-156
Peterson T.J., Karmakar S., Pace M.C., Gao T., and Smith C.L. The silencing mediator of retinoic acid and thyroid hormone receptor (SMRT) corepressor is required for full estrogen receptor alpha transcriptional activity. Mol. Cell. Biol. 27 (2007) 5933-5948
Petrij F., Giles R.H., Dauwerse H.G., Saris J.J., Hennekam R.C., Masuno M., Tommerup N., van O.G.J., Goodman R.H., and Peters D.J. Rubinstein-Taybi syndrome caused by mutations in the transcriptional co-activator CBP. Nature 376 (1995) 348-351
Pfaff D. Hormone-driven mechanisms in the central nervous system facilitate the analysis of mammalian behaviours. J. Endocrinol. 184 (2005) 447-453
Pleim E.T., Brown T.J., MacLusky N.J., Etgen A.M., and Barfield R.J. Dilute estradiol implants and progestin receptor induction in the ventromedial nucleus of the hypothalamus: correlation with receptive behavior in female rats. Endocrinology 124 (1989) 1807-1812
Pratt W.B., Galigniana M.D., Morishima Y., and Murphy P.J. Role of molecular chaperones in steroid receptor action. Essays Biochem. 40 (2004) 41-58
Ramos H.E., and Weiss R.E. Regulation of nuclear coactivator and corepressor expression in mouse cerebellum by thyroid hormone. Thyroid 16 (2006) 211-216
Reik W., Dean W., and Walter J. Epigenetic reprogramming in mammalian development. Science 293 (2001) 1089-1093
Rissman E.F., Early A.H., Taylor J.A., Korach K.S., and Lubahn D.B. Estrogen receptors are essential for female sexual receptivity. Endocrinology 138 (1997) 507-510
Robyr D., Wolffe A.P., and Wahli W. Nuclear hormone receptor coregulators in action: diversity for shared tasks. Mol. Endocrinol. 14 (2000) 329-347
Rogatsky I., Luecke H.F., Leitman D.C., and Yamamoto K.R. Alternate surfaces of transcriptional coregulator GRIP1 function in different glucocorticoid receptor activation and repression contexts. Proc. Natl. Acad. Sci. USA 99 (2002) 16701-16706
Romero L.M. Seasonal changes in plasma glucocorticoid concentrations in free-living vertebrates. Gen. Comp. Endocrinol. 128 (2002) 1-24
Rosenfeld M.G., Lunyak V.V., and Glass C.K. Sensors and signals: a coactivator/corepressor/epigenetic code for integrating signal-dependent programs of transcriptional response. Genes Dev. 20 (2006) 1405-1428
Rowan B.G., Weigel N.L., and O'Malley B.W. Phosphorylation of steroid receptor coactivator-1. Identification of the phosphorylation sites and phosphorylation through the mitogen-activated protein kinase pathway. J. Biol. Chem. 275 (2000) 4475-4483
Sartorius C.A., Melville M.Y., Hovland A.R., Tung L., Takimoto G.S., and Horwitz K.B. A third transactivation function (AF3) of human progesterone receptors located in the unique N-terminal segment of the B-isoform. Mol. Endocrinol. 8 (1994) 1347-1360
Sasaki H., Hayakawa J., Terai Y., Kanemura M., Tanabe-Kimura A., Kamegai H., Seino-Noda H., Ezoe S., Matsumura I., Kanakura Y., Sakata M., Tasaka K., and Ohmichi M. Difference between genomic actions of estrogen versus raloxifene in human ovarian cancer cell lines. Oncogene 27 (2008) 2737-2745
Sawamura N., Ando T., Maruyama Y., Fujimuro M., Mochizuki H., Honjo K., Shimoda M., Toda H., Sawamura-Yamamoto T., Makuch L.A., Hayashi A., Ishizuka K., Cascella N.G., Kamiya A., Ishida N., Tomoda T., Hai T., Furukubo-Tokunaga K., and Sawa A. Nuclear DISC1 regulates CRE-mediated gene transcription and sleep homeostasis in the fruit fly. Mol. Psychiat. 13 (2008) 1138-1148 1069
Schumacher M., and Balthazart J. The effects of testosterone and its metabolites on sexual behavior and morphology in male and female Japanese quail. Physiol. Behav. 30 (1983) 335-339
Setiawan E., Owen D., McCabe L., Kostaki A., Andrews M.H., and Matthews S.G. Glucocorticoids do not alter developmental expression of hippocampal or pituitary steroid receptor coactivator-1 and -2 in the late gestation fetal guinea pig. Endocrinology 145 (2004) 3796-3803
Shang Y., and Brown M. Molecular determinants for the tissue specificity of SERMs. Science 295 (2002) 2381-2465
Shao W., Halachmi S., and Brown M. ERAP140, a conserved tissue-specific nuclear receptor coactivator. Mol. Cell. Biol. 22 (2002) 3358-3372
Shearman L.P., Zylka M.J., Reppert S.M., and Weaver D.R. Expression of basic helix-loop-helix/PAS genes in the mouse suprachiasmatic nucleus. Neuroscience 89 (1999) 387-397
Shiau A.K., Barstad D., Loria P.M., Cheng L., Kushner P.J., Agard D.A., and Greene G.L. The structural basis of estrogen receptor/coactivator recognition and the antagonism of this interaction by tamoxifen. Cell 95 (1998) 927-937
Shughrue P.J., Lane M.V., and Merchenthaler I. Comparative distribution of estrogen receptor-alpha and -beta mRNA in the rat central nervous system. J. Comp. Neurol. 388 (1997) 507-525
Smith C.L., and O'Malley B.W. Coregulator function: a key to understanding tissue specificity of selective receptor modulators. Endocr. Rev. 25 (2004) 45-71
Smith C.L., Oñate S.A., Tsai M.J., and O'Malley B.W. CREB binding protein acts synergistically with steroid receptor coactivator-1 to enhance steroid receptor-dependent transcription. Proc. Natl. Acad. Sci. USA 93 (1996) 8884-8888
Smith C.L., Nawaz Z., and O'Malley B.W. Coactivator and corepressor regulation of the agonist/antagonist activity of the mixed antiestrogen, 4-hydroxytamoxifen. Mol. Endocrinol. 11 (1997) 657-666
Smith C.L., DeVera D.G., Lamb D.J., Nawaz Z., Jiang Y.H., Beaudet A.L., and O'Malley B.W. Genetic ablation of the steroid receptor coactivator-ubiquitin ligase, E6-AP, results in tissue-selective steroid hormone resistance and defects in reproduction. Mol. Cell. Biol. 22 (2002) 525-535
Stromberg H., Svensson S.P., and Hermanson O. Distribution of CREB-binding protein immunoreactivity in the adult rat brain. Brain Res. 818 (1999) 510-514
Suen C.S., Berrodin T.J., Mastroeni R., Cheskis B.J., Lyttle C.R., and Frail D.E. A transcriptional coactivator, steroid receptor coactivator-3, selectively augments steroid receptor transcriptional activity. J. Biol. Chem. 273 (1998) 27645-27653
Takeuchi Y., Murata Y., Sadow P., Hayashi Y., Seo H., Xu J., O'Malley B.W., Weiss R.E., and Refetoff S. Steroid receptor coactivator-1 deficiency causes variable alterations in the modulation of T(3)-regulated transcription of genes in vivo. Endocrinology 143 4 (2002) 1346-1352
Tanenbaum D.M., Wang Y., Williams S.P., and Sigler P.B. Crystallographic comparison of the estrogen and progesterone receptor's ligand binding domains. Proc. Natl. Acad. Sci. USA 95 (1998) 5998-6003
Tcherepanova I., Puigserver P., Norris J.D., Spiegelman B.M., and McDonnell D.P. Modulation of estrogen receptor-alpha transcriptional activity by the coactivator PGC-1. J. Biol. Chem. 275 (2000) 16302-16308
Tennent B.J., Smith E.R., and Davidson J.M. The effects of estrogen and progesterone on female rat proceptive behavior. Horm. Behav. 14 (1980) 65-75
Tetel M.J., Giangrande P.H., Leonhardt S.A., McDonnell D.P., and Edwards D.P. Hormone-dependent interaction between the amino- and carboxyl-terminal domains of progesterone receptor in vitro and in vivo. Mol. Endocrinol. 13 (1999) 910-924
Tetel M.J., Ungar T.C., Hassan B., and Bittman E.L. Photoperiodic regulation of androgen receptor and steroid receptor coactivator-1 in Siberian hamster brain. Mol. Brain Res. 131 (2004) 79-87
Tetel M.J., Siegal N.K., and Murphy S.D. Cells in behaviourally relevant brain regions coexpress nuclear receptor coactivators and ovarian steroid receptors. J. Neuroendocrinol. 19 (2007) 262-271
Tora L., White J., Brou C., Tasset D., Webster N., Scheer E., and Chambon P. The human estrogen receptor has two independent non-acidic transcriptional activation functions. Cell 59 (1989) 477-487
Torchia J., Rose D.W., Inostroza J., Kamei Y., Westin S., Glass C.K., and Rosenfeld M.G. The transcriptional co-activator p/CIP binds CBP and mediates nuclear-receptor function. Nature 387 (1997) 677-684
Tremblay A., Tremblay G.B., Labrie F., and Giguere V. Ligand-independent recruitment of SRC-1 to estrogen receptor beta through phosphorylation of activation function AF-1. Mol. Cell 3 (1999) 513-519
Tsai M.J., and O'Malley B.W. Molecular mechanisms of action of steroid/thyroid receptor superfamily members. Ann. Rev. Biochem. 63 (1994) 451-486
Tung L., Kamel Mohamed M., Hoeffler J.P., Takimoto G.S., and Horwitz K.B. Antagonist-occupied human progesterone B-receptors activate transcription without binding to progesterone response elements and are dominantly inhibited by A-receptors. Mol. Endocrinol. 7 (1993) 1256-1265
Vaeteewoottacharn K., Chamutpong S., Ponglikitmongkol M., and Angeletti P.C. Differential localization of HPV16 E6 splice products with E6-associated protein. Virol. J. 16 (2005) 50
van der Laan S., Lachize S.B., Schouten T.G., Vreugdenhil E., de Kloet E.R., and Meijer O.C. Neuroanatomical distribution and colocalisation of nuclear receptor corepressor (N-CoR) and silencing mediator of retinoid and thyroid receptors (SMRT) in rat brain. Brain Res. 1059 (2005) 113-121
van der Laan S., Lachize S.B., Vreugdenhil E., de Kloet E.R., and Meijer O.C. Nuclear receptor coregulators differentially modulate induction and glucocorticoid receptor-mediated repression of the corticotropin-releasing hormone gene. Endocrinology 149 (2008) 725-732
Vasudevan N., and Pfaff D.W. Non-genomic actions of estrogens and their interaction with genomic actions in the brain. Front. Neuroendocrinol. 29 (2008) 238-257
Vasudevan N., Zhu Y.S., Daniel S., Koibuchi N., Chin W.W., and Pfaff D. Crosstalk between oestrogen receptors and thyroid hormone receptor isoforms results in differential regulation of the preproenkephalin gene. J. Neuroendocrinol. 13 (2001) 779-790
Vasudevan N., Ogawa S., and Pfaff D. Estrogen and thyroid hormone receptor interactions; physiological flexibility by molecular specificity. Physiol. Rev. 82 (2002) 923-944
Vegeto E., Shahbaz M.M., Wen D.X., Goldman M.E., O'Malley B.W., and McDonnell D.P. Human progesterone receptor A form is a cell- and promoter-specific repressor of human progesterone receptor B function. Mol. Endocrinol. 7 (1993) 1244-1255
Villamar-Cruz O., Manjarrez-Marmolejo J., Alvarado R., and Camacho-Arroyo I. Regulation of the content of progesterone and estrogen receptors, and their cofactors SRC-1 and SMRT by the 26S proteasome in the rat brain during the estrous cycle. Brain Res. Bull. 69 (2006) 276-281
Vo N., and Goodman R.H. CREB-binding protein and p300 in transcriptional regulation. J. Biol. Chem. 276 (2001) 13505-13508
Voegel J.J., Heine M.J.S., Zechel C., Chambon P., and Gronemeyer H. TIF2, a 160 kDa transcriptional mediator for the ligand-dependent activation function AF-2 of nuclear receptors. EMBO J. 15 (1996) 3667-3675
von Mikecz A., Neu E., Krawinkel U., and Hemmerich P. Human ribosomal protein L7 carries two nucleic acid-binding domains with distinct specificities. Biochem. Biophys. Res. Commun. 258 (1999) 530-536
Wang Z., Qi C., Krones A., Woodring P., Zhu X., Reddy J.K., Evans R.M., Rosenfeld M.G., and Hunter T. Critical roles of the p160 transcriptional coactivators p/CIP and SRC-1 in energy balance. Cell. Metab. 3 (2006) 111-122
Wardell S.E., Boonyaratanakornkit V., Adelman J., Aronheim A., and Edwards D.P. Jun dimerization protein 2 functions as a progesterone receptor N-terminal domain coactivator. Mol. Cell. Biol. 22 (2002) 5451-5466
Warembourg M., Jolivet A., and Milgrom E. Immunohistochemical evidence of the presence of estrogen and progesterone receptors in the same neurons of the guinea pig hypothalamus and preoptic area. Brain Res. 480 (1989) 1-15
Webb P., Nguyen P., Shinsako J., Anderson C., Feng W., Nguyen M.P., Chen D., Huang S.M., Subramanian S., McKinerney E., Katzenellenbogen B.S., Stallcup M.R., and Kushner P.J. Estrogen receptor activation function 1 works by binding p160 coactivator proteins. Mol. Endocrinol. 12 (1998) 1605-1618
Weiss R.E., Xu J., Ning G., Pohlenz J., O'Malley B.W., and Refetoff S. Mice deficient in the steroid receptor co-activator 1 (SRC-1) are resistant to thyroid hormone. EMBO J. 18 (1999) 1900-1904
Whalen R.E. Estrogen-progesterone induction of mating in female rats. Horm. Behav. 5 (1974) 157-162
Wong C., Komm B., and Cheskis B.J. Structure-function evaluation of ER alpha and beta interplay with SRC family coactivators. ER selective ligands. Biochemistry 40 (2001) 6756-6765
Wu R.C., Hashimoto Y., Wong J., Xu J., Tsai S.Y., Tsai M.-J., and O'Malley B.W. Regulation of SRC-3 (pCIP/ACTR/AIB-1/RAC-3/TRAM-1) coactivator activity by I kappaB kinase. Mol. Cell. Biol. 22 (2002) 3549-3561
Wu R.C., Qin J., Yi P., Wong J., Tsai S.Y., Tsai M.J., and O'Malley B.W. Selective phosphorylations of the SRC-3/AIB1 coactivator integrate genomic reponses to multiple cellular signaling pathways. Mol. Cell 15 (2004) 937-949
Wu R.C., Smith C.L., and O'Malley B.W. Transcriptional regulation by steroid receptor coactivator phosphorylation. Endocr. Rev. 26 (2005) 393-399
Wu R.C., Feng Q., Lonard D.M., and O'Malley B.W. SRC-3 coactivator functional lifetime is regulated by a phospho-dependent ubiquitin time clock. Cell 15 (2007) 1125-1140
Xu J., Qiu Y., Demayo F.J., Tsai S.Y., Tsai M.J., and O'Malley B.W. Partial hormone resistance in mice with disruption of the steroid receptor coactivator-1 (SRC-1) gene. Science 279 (1998) 1922-1925
Xu J., Liao L., Ning G., Yoshida-Kimoya H., Deng C., and O'Malley B.W. The steroid receptor coactivator SRC-3 (p/cip/RAC3/AIB1/ACTR/TRAM-1) is required for normal growth, puberty, female reproductive function, and mammary gland development. Proc. Natl. Acad. Sci. USA 97 (2000) 6379-6384
Xu Y., Klein-Hitpass L., and Bagchi M.K. E1A-mediated repression of progesterone receptor-dependent transactivation involves inhibition of the assembly of a multisubunit coactivation complex. Mol. Cell. Biol. 20 (2000) 2138-2146
Yang X.J., Ogryzko V.V., Nishikawa J., Howard B.H., and Nakatani Y. A p300/CBP-associated factor that competes with the adenoviral oncoprotein E1A. Nature 382 (1996) 319-324
Yi P., Driscoll M.D., Huang J., Bhagat S., Hilf R., Bambara R.A., and Muyan M. The effects of estrogen-responsive element- and ligand-induced structural changes on the recruitment of cofactors and transcriptional responses by ER alpha and ER beta. Mol. Endocrinol. 16 (2002) 674-693
Yi P., Wu R.C., Sandquist J., Wong J., Tsai S.Y., Tsai M.J., Means A.R., and O'Malley B.W. Peptidyl-prolyl isomerase 1 (Pin1) serves as a coactivator of steroid receptor by regulating the activity of phosphorylated steroid receptor coactivator 3 (SRC-3/AIB1). Mol. Cell. Biol. 25 (2005) 9687-9699
Yoon H.G., Chan D.W., Reynolds A.B., Qin J., and Wong J. N-CoR mediates DNA methylation-dependent repression through a methyl CpG binding protein Kaiso. Mol. Cell 12 (2003) 723-734
Zhang H., Yi X., Sun X., Yin N., Shi B., Wu H., Wang D., Wu G., and Shang Y. Differential gene regulation by the SRC family of coactivators. Genes Dev. 18 (2004) 1753-1765
Similar publications
Sorry the service is unavailable at the moment. Please try again later.
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.