Abstract :
[en] Wakefulness and sleep are associated with distinct patterns of neural activity and neuromodulation. In humans, functional neuroimaging was used to characterize the related changes in regional brain metabolism and hemodynamics. Recent data combining EEG and fMRI described the transient responses associated with spindles and slow waves, as well as the changes in functional integration during NREM sleep. It was also shown that regional brain activity during sleep is influenced by the experience acquired during the preceding waking period. These data are currently interpreted in the framework of two theories. First, the use-dependent increase in slow oscillation during NREM sleep is associated with local synaptic homeostasis. Second, reactivations of memory traces during NREM sleep would reorganize declarative memories in hippocampal-neocortical networks, a systems-level memory consolidation which can be hindered by sleep deprivation. Collectively, these data reveal the dynamical changes in brain activity during sleep which support normal human cognition.
Scopus citations®
without self-citations
0