[en] We study the implications of the global U(1) R symmetry present in minimal lepton flavor violating implementations of the seesaw mechanism for neutrino masses. In the context of minimal type I seesaw scenarios with a slightly broken U(1) R , we show that, depending on the R-charge assignments, two classes of generic models can be identified. Models where the right-handed neutrino masses and the lepton number breaking scale are decoupled, and models where the parameters that slightly break the U(1) R induce a suppression in the light neutrino mass matrix. We show that within the first class of models, contributions of right-handed neutrinos to charged lepton flavor violating processes are severely suppressed. Within the second class of models we study the charged lepton flavor violating phenomenology in detail, focusing on μ → eγ, μ → 3e and μ − e conversion in nuclei. We show that sizable contributions to these processes are naturally obtained for right-handed neutrino masses at the TeV scale. We then discuss the interplay with the effects of the right-handed neutrino interactions on primordial B − L asymmetries, finding that sizable right-handed neutrino contributions to charged lepton flavor violating processes are incompatible with the requirement of generating (or even preserving preexisting) B − L asymmetries consistent with the observed baryon asymmetry of the Universe.
Disciplines :
Physics
Author, co-author :
Aristizabal Sierra, Diego ; Université de Liège - ULiège > Département d'astrophys., géophysique et océanographie (AGO) > Physique des astroparticules
Degée, Audrey ; Université de Liège - ULiège > Département d'astrophys., géophysique et océanographie (AGO) > Physique des astroparticules
Kamenik, Jernej F.; Stefan Inst., Ljubljana
Language :
English
Title :
Minimal Lepton Flavor Violating Realizations of Minimal Seesaw Models.
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
T. Schwetz, M. Tortola and J. Valle, Where we are on θ 13: addendum to 'Global neutrino data and recent reactor fluxes: status of three-flavour oscillation parameters', New J. Phys. 13 (2011) 109401 [arXiv:1108.1376].
M. Gonzalez-Garcia, M. Maltoni and J. Salvado, Updated global fit to three neutrino mixing: status of the hints of θ 13 > 0, JHEP 04 (2010) 056 [arXiv:1001.4524].
R. S. Chivukula and H. Georgi, Composite Technicolor Standard Model, Phys. Lett. B 188 (1987) 99.
L. Hall and L. Randall, Weak scale effective supersymmetry, Phys. Rev. Lett. 65 (1990) 2939.
G. D'Ambrosio, G. Giudice, G. Isidori and A. Strumia, Minimal flavor violation: An Effective field theory approach, Nucl. Phys. B 645 (2002) 155 [hep-ph/0207036].
V. Cirigliano, B. Grinstein, G. Isidori and M. B. Wise, Minimal flavor violation in the lepton sector, Nucl. Phys. B 728 (2005) 121 [hep-ph/0507001].
S. Davidson and F. Palorini, Various definitions of Minimal Flavour Violation for Leptons, Phys. Lett. B 642 (2006) 72 [hep-ph/0607329].
M. Gavela, T. Hambye, D. Hernandez and P. Hernandez, Minimal Flavour Seesaw Models, JHEP 09 (2009) 038 [arXiv:0906.1461].
R. Alonso, G. Isidori, L. Merlo, L. A. Munoz and E. Nardi, Minimal flavour violation extensions of the seesaw, JHEP 06 (2011) 037 [arXiv:1103.5461].
A. Ibarra, E. Molinaro and S. Petcov, TeV Scale See-Saw Mechanisms of Neutrino Mass Generation, the Majorana Nature of the Heavy Singlet Neutrinos and (ββ) ov-Decay, JHEP 09 (2010) 108 [arXiv:1007.2378].
A. Ibarra, E. Molinaro and S. Petcov, Lepton Number Violation in TeV Scale See-Saw Extensions of the Standard Model, J. Phys. Conf. Ser. 335 (2011) 012048 [arXiv:1101.5778].
A. Ibarra, E. Molinaro and S. Petcov, Low Energy Signatures of the TeV Scale See-Saw Mechanism, Phys. Rev. D 84 (2011) 013005 [arXiv:1103.6217].
D. Aristizabal Sierra and C. E. Yaguna, On the importance of the 1-loop finite corrections to seesaw neutrino masses, JHEP 08 (2011) 013 [arXiv:1106.3587].
J. Schechter and J. Valle, Neutrino Masses in SU (2) × U (1) Theories, Phys. Rev. D 22 (1980) 2227.
J. F. Kamenik and M. Nemevšek, Lepton flavor violation in type-I + III seesaw, JHEP 11 (2009) 023 [arXiv:0908.3451].
S. Blanchet, T. Hambye and F.-X. Josse-Michaux, Reconciling leptogenesis with observable μ, → cγ rates, JHEP 04 (2010) 023 [arXiv:0912.3153].
Particle Data Group collaboration, K. Nakamura et al., Review of particle physics, J. Phys. G 37 (2010) 075021.
R. Mohapatra and J. Valle, Neutrino Mass and Baryon Number Nonconservation in Superstring Models, Phys. Rev. D 34 (1986) 1642.
G. Branco, W. Grimus and L. Lavoura, The Seesaw Mechanism in the Presence of a Conserved Lepton Number, Nucl. Phys. B 312 (1989) 492.
A. Abada, C. Biggio, F. Bonnet, M. Gavela and T. Hambye, Low energy effects of neutrino masses, JHEP 12 (2007) 061 [arXiv:0707.4058].
P.-H. Gu, M. Hirsch, U. Sarkar and J. Valle, Neutrino masses, leptogenesis and dark matter in hybrid seesaw, Phys. Rev. D 79 (2009) 033010 [arXiv:0811.0953].
D. Ibanez, S. Morisi and J. Valle, Inverse tri-bimaximal type-III seesaw and lepton flavor violation, Phys. Rev. D 80 (2009) 053015 [arXiv:0907.3109].
D. Forero, S. Morisi, M. Tortola and J. Valle, Lepton flavor violation and non-unitary lepton mixing in low-scale type-I seesaw, JHEP 09 (2011) 142 [arXiv:1107.6009].
MEG collaboration, J. Adam et al., New limit on the lepton-flavour violating decay μ+ → e +γ, Phys. Rev. Lett. 107 (2011) 171801 [arXiv:1107.5547].
BABAR collaboration, B. Aubert et al., Searches for Lepton Flavor Violation in the Decays τ ± → e ±γ and τ ± → μ ±γ, Phys. Rev. Lett. 104 (2010) 021802 [arXiv:0908.2381].
A. Ilakovac and A. Pilaftsis, Flavor violating charged lepton decays in seesaw-type models, Nucl. Phys. B 437 (1995) 491 [hep-ph/9403398].
SINDRUM collaboration, U. Bellgardt et al., Search for the Decay μ + → e +e +e -, Nucl. Phys. B 299 (1988) 1.
K. Hayasaka et al., Search for Lepton Flavor Violating τ Decays into Three Leptons with 719 Million Produced τ +τ - Pairs, Phys. Lett. B 687 (2010) 139 [arXiv:1001.3221].
R. Kitano, M. Koike and Y. Okada, Detailed calculation of lepton flavor violating muon electron conversion rate for various nuclei, Phys. Rev. D 66 (2002) 096002
[Erratum Phys. Rev. D 76 (2007) 059902] [hep-ph/0203110].
WMAP collaboration, G. Hinshaw et al., Five-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Data Processing, Sky Maps and Basic Results, Astrophys. J. Suppl. 180 (2009) 225 [arXiv:0803.0732].
T. Asaka and S. Blanchet, Leptogenesis with an almost conserved lepton number, Phys. Rev. D 78 (2008) 123527 [arXiv:0810.3015].
E. Bertuzzo, P. Di Bari, F. Feruglio and E. Nardi, Flavor symmetries, leptogenesis and the absolute neutrino mass scale, JHEP 11 (2009) 036 [arXiv:0908.0161].
D. Aristizabal Sierra, F. Bazzocchi, I. de Medeiros Varzielas, L. Merlo and S. Morisi, Tri-Bimaximal Lepton Mixing and Leptogenesis, Nucl. Phys. B 827 (2010) 34 [arXiv:0908.0907].
R. G. Felipe and H. Serodio, Constraints on leptogenesis from a symmetry viewpoint, Phys. Rev. D 81 (2010) 053008 [arXiv:0908.2947].
E. Nardi, Y. Nir, E. Roulet and J. Racker, The importance of flavor in leptogenesis, JHEP 01 (2006) 164 [hep-ph/0601084].
Similar publications
Sorry the service is unavailable at the moment. Please try again later.
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.