No full text
Eprint already available on another site (E-prints, working papers and research blog)
Fixed-rank matrix factorizations and Riemannian low-rank optimization
Mishra, Bamdev; Meyer, Gilles; Bonnabel, Silvere et al.
2012
 

Files


Full Text
No document available.

Send to



Details



Abstract :
[en] Motivated by the problem of learning a linear regression model whose parameter is a large fixed-rank non-symmetric matrix, we consider the optimization of a smooth cost function defined on the set of fixed-rank matrices. We adopt the geometric optimization framework of optimization on Riemannian matrix manifolds. We study the underlying geometries of several well-known fixed-rank matrix factorizations and then exploit the Riemannian geometry of the search space in the design of a class of gradient descent and trust-region algorithms. The proposed algorithms generalize our previous results on fixed-rank symmetric positive semidefinite matrices, apply to a broad range of applications, scale to high-dimensional problems and confer a geometric basis to recent contributions on the learning of fixed-rank non-symmetric matrices. We make connections with existing algorithms in the context of low-rank matrix completion and discuss relative usefulness of the proposed framework. Numerical experiments suggest that the proposed algorithms compete with the state-of-the-art and that manifold optimization offers an effective and versatile framework for the design of machine learning algorithms that learn a fixed-rank matrix.
Disciplines :
Computer science
Author, co-author :
Mishra, Bamdev ;  Université de Liège - ULiège > Dép. d'électric., électron. et informat. (Inst.Montefiore) > Systèmes et modélisation
Meyer, Gilles ;  Université de Liège - ULiège > Dép. d'électric., électron. et informat. (Inst.Montefiore) > Systèmes et modélisation
Bonnabel, Silvere
Sepulchre, Rodolphe ;  Université de Liège - ULiège > Dép. d'électric., électron. et informat. (Inst.Montefiore) > Systèmes et modélisation
Language :
English
Title :
Fixed-rank matrix factorizations and Riemannian low-rank optimization
Publication date :
2012
Available on ORBi :
since 25 December 2012

Statistics


Number of views
88 (5 by ULiège)
Number of downloads
0 (0 by ULiège)

Bibliography


Similar publications



Contact ORBi